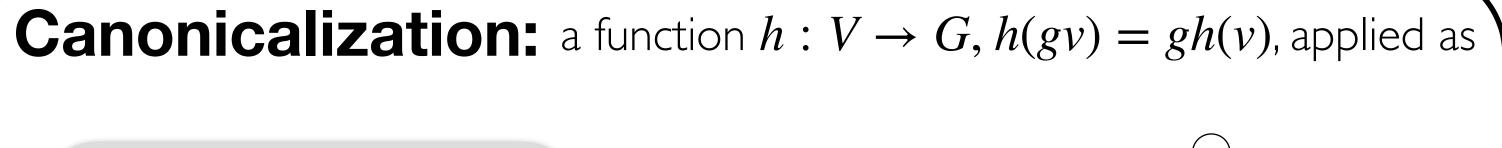


Equivariant Frames and the Impossibility of Continuous Canonicalization

Nadav Dym*, Hannah Lawrence*, Jonathan W. Siegel* Technion, MIT, Texas A&M University

Equivariant Canonicalization

Methods for making an arbitrary function equivariant (f(gv) = gf(v)):



$$f(v) \mapsto \tilde{f}(v) := f(h_v^{-1}v)$$

$$C_4$$

$$C_4$$

$$C_4$$

*Definition can be generalized to picking out orbit representatives when v is self-symmetric

Frame: a function $\mathcal{F}: V \to 2^G$, $\mathcal{F}(gv) = g\mathcal{F}(v)$, applied via "averaging"

$$f(v) \mapsto \tilde{f}(v) := \frac{1}{|\mathcal{F}(v)|} \sum_{g \in \mathcal{F}(v)} f(g^{-1}v)$$
 Special case: group averaging
$$f(v) \mapsto \tilde{f}(v) := \frac{1}{|G|} \sum_{g \in G} f(g^{-1}v)$$

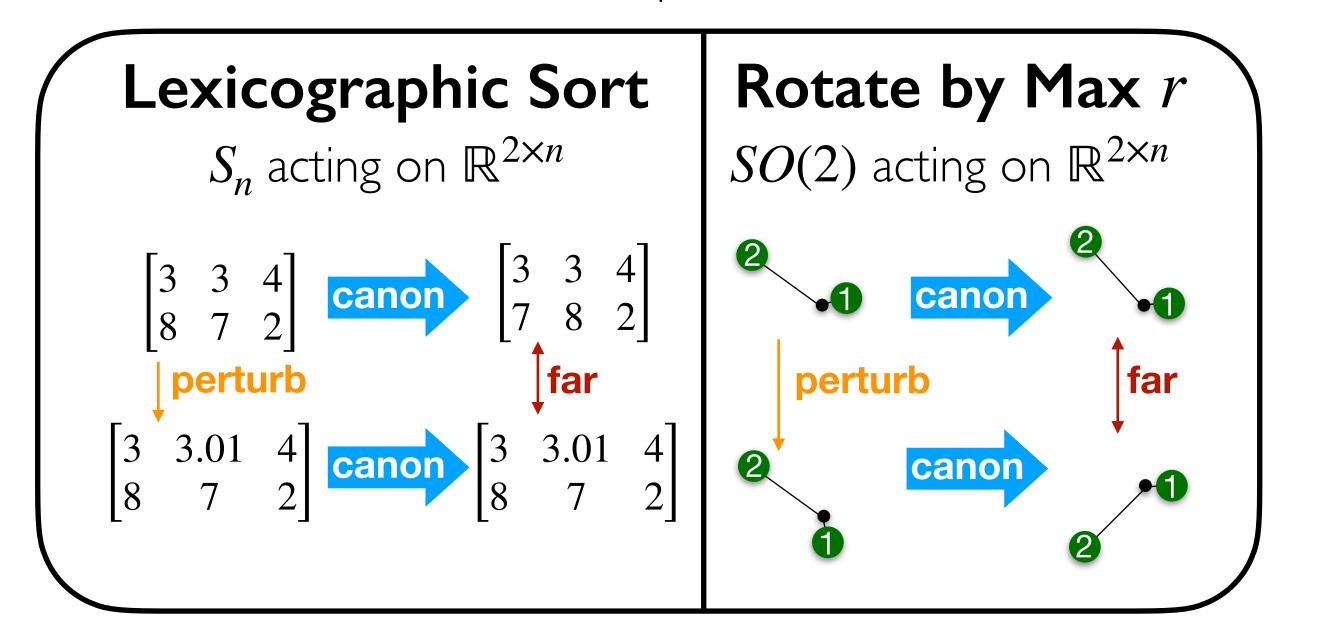
Advantages over equivariant architectures: flexible, simpler to implement

Seemingly modest goal:

Canonicalization

Continuous invariant function \tilde{f}

For some group actions, a canonicalization that preserves continuity can seem hard to construct. The intuitive options below are discontinuous:



Is there any canonicalization that preserves continuity for these actions?

Theorem: Often, there is no continuous canonicalization

Is there **any frame** that preserves continuity for these actions?

Theorem: Often, there is no small frame

There is **no** continuity-preserving frame other than group-averaging for S_n acting on $\mathbb{R}^{d\times n}$ (d,n>1), and **no** finite continuity-preserving frame for SO(2) acting on $\mathbb{R}^{2\times n}$ $(n\geq 2)$

Action	Permutation	Permutation	SO(d)	O(d)
Domain	$\mathbb{R}_{ ext{distinct}}^{d imes n}$	$\mathbb{R}^{d imes n}$	$\mathbb{R}^{d imes n}$	$\mathbb{R}^{d imes n}$
Canonicalization	no	no	no if $n \geq d$	no if $n > d$
Frame	N=n!	N=n!	$N = \infty \text{ if } n \geq d$	N > 1 if n > d
Weighted frame	$N \le (n-1)d$	$\frac{n}{2} < N \le n^{2(d-1)}$	$N \le (d-1)! \binom{n}{d-1}$	$N \leq 2(d-1)! \binom{n}{d-1}$

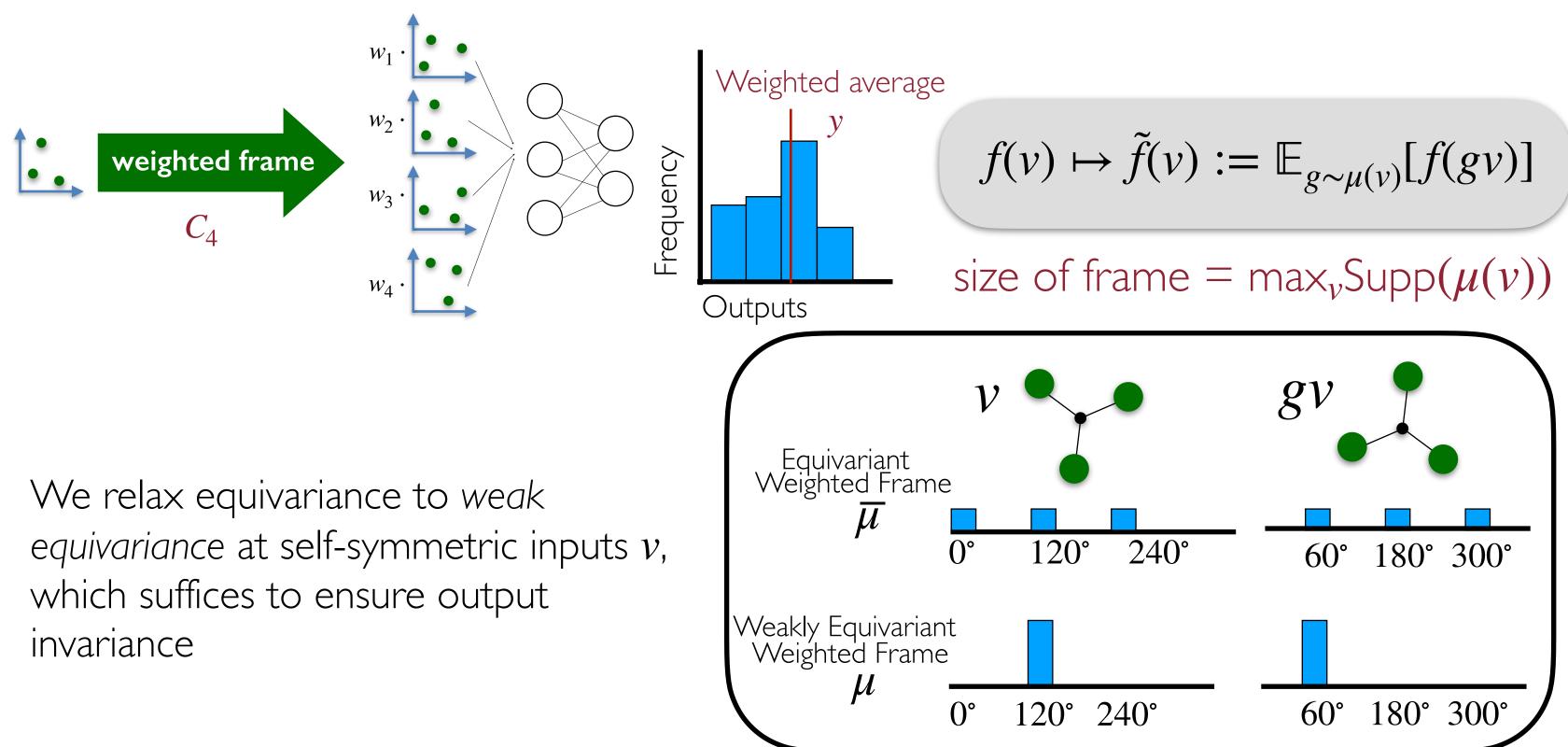
Table 1. Summary of main results. For various group actions, we show lower and upper bounds on the minimal cardinality N for which a continuity-preserving frame or weighted frame exists, and whether a continuous canonicalization exists (in which case N=1). The $N=\infty$ result for unweighted SO(d) frames is proven only when d=2 (although we conjecture it holds for general $d\geq 2$ as well).

Can the ideas of frame averaging still be applied efficiently to such groups?

Solution: Robust Frames

Goal: Construct continuity-preserving frames that are efficient to apply

An equivariant weighted frame $\mu:V\to \mathscr{P}(G)$ is an equivariant map to the space $\mathcal{P}(G)$ of probability measures on G, i.e. $\mu(gv) =$ the push forward of $\mu(v)$ by g



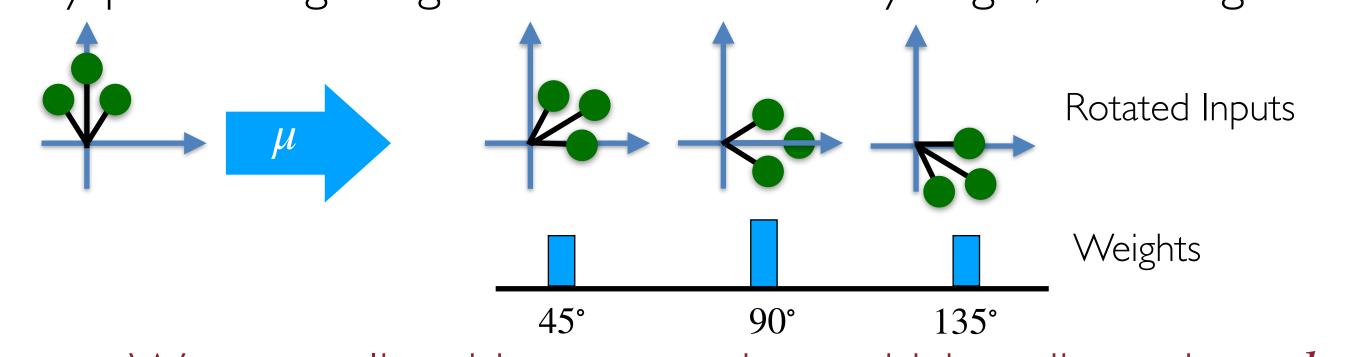
Proposition: A weighted frame μ preserves continuity, i.e. is a **robust frame**, iff $v \mapsto \mu(v)$ itself is continuous (up to stabilizers).

Permutations: Consider the action of S_n on point clouds $X \in \mathbb{R}^{d \times n}$.

$$\mu^{S_n}(X) := \sum_{\alpha \in S} \mathbb{P}_{a \sim S^{d-1}}(g^{-1} = \operatorname{argsort}(a^T X)) \delta_g$$

 μ^{S_n} is a continuity-preserving weighted frame with $O(n^{2(d-1)})$ elements.

Rotations: Consider the action of SO(2) on point clouds $X \in \mathbb{R}^{2 \times n}$. A continuity-preserving weighted frame orients by angle, and weights by radius:



We generalize this construction to higher dimensions d.

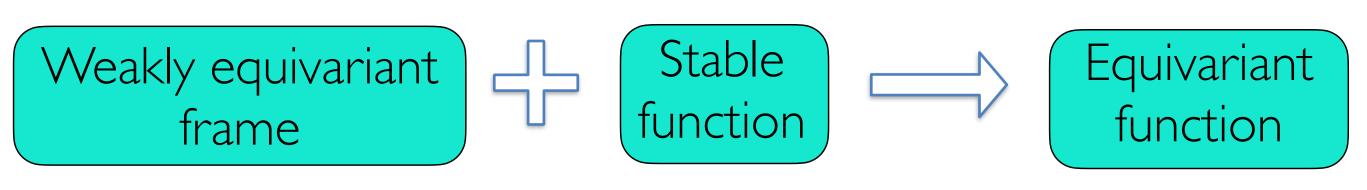
From Invariant to Equivariant

Weighted frame averaging as $\mathbb{E}_{g \sim \mu(v)}[g^{-1}f(gv)]$ produces equivariant functions when μ is equivariant, but not when μ is only weakly equivariant.

However, weak equivariance is desirable computationally!

Defn. Stabilizer of v: $G_v = \{g : gv = v\}$. Stable function satisfies $G_v \subseteq G_{f(v)} \forall v$.

Stable functions: special function class for which weak equivariance suffices



How do we parametrize stable functions as learnable networks?

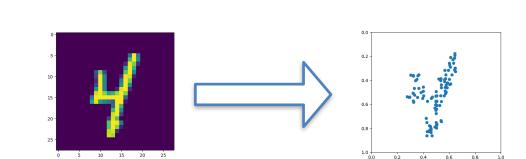
Example: For SO(2) acting on $\mathbb{R}^{2\times n}$, $f: \mathbb{R}^{2\times n} \to \mathbb{R}^{2\times n}$ is stable iff $f(\mathbf{0}) = \mathbf{0}$.

Stable frames: alternative that offloads stability to the frame. E.g. for SO(2), weights rotations θ and $-\theta$ equally in each $\mu(v)$

Experiments

For permutations acting on $\mathbb{R}^{d\times n}$, our weighted frame works best:

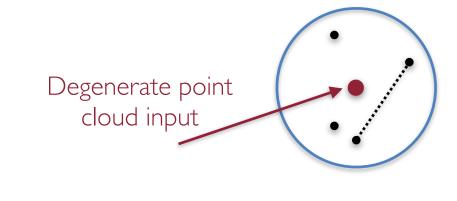
Task: Classify MNIST digit based on unordered point cloud



Invariance Method	Test Accuracy (
No Invariance	25.5
Discontinuous Canonicalization	85.6
Robust Frames	88.7
Reynolds Operator	22.6

Methods: no canonicalization, a discontinuous canonicalization (sorting along one axis), sampling 25 elements from the robust frame μ^{S_n} , and sampling 25 elements from S_n uniformly

We verify a discontinuity in a trained point cloud network:



Metric: average pairwise distance in neural network value between point clouds in a neighborhood of the hypothesized discontinuous input vs random input

We train the O(3)-equivariant network from the equiadapt library [2] on ModelNet40, and verify that the end-toend function is discontinuous near a degenerate (rank I) point cloud b

 $\frac{||f(C(x_1)) - f(C(x_2))||}{||f(C(x_1))||}$

Pairwise Error Metric $| x_1, x_2 \text{ near a singularity } b | x_1, x_2 \text{ near a generic point } g$ 1.7035e-5 0.0406 0.0009

Table 3. Average distance between pairs of points, near a singular point cloud and near a random point cloud.

 \rightarrow Empirically, there isn't a valid limiting value at b!

Future Work

- Stronger notions of smoothness, e.g. Lipschitz continuity
- Lower bounds on the size of weighted SO(d) frames
- Analysis of efficiency of sampling from weighted frames
- Practical implementation and empirical analysis

References

- 1. Puny, O. et al, Frame averaging for invariant and equivariant network design. 2021
- 2. Kaba, S.-O. et al, Equivariance with learned canonicalization functions. 2022
- 3. Kim, J. et al, Learning probabilistic symmetrization for architecture agnostic equivariance. 2023 4. Pozdnyakov, S. et al, Smooth, exact rotational symmetrization for deep learning on point clouds. 2023