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Equivariant Canonicalization ¢ o rrom Invariant to Equivariant
Methods for making an arbitrary function equivariant (f(gv) = gf(v)): There is o continuity-preserving frame other than group-averaging for S, acting on R4 Weighted frame averaging as E,,_,,,[g ™ f(gv)] produces equivariant functions
(d,n > 1),and no finite continuity-preserving frame for SO(2) acting on R*" (n > 2) when u I1s equivariant, but not when p 1s only weakly equivariant.
Canonicalization: afunction i : V — G, h(gv) = gh(v), applied as I‘)“Cﬁ"f‘ Peﬂg‘;lfiauon Pe"g;‘i‘;‘%ﬁon *?R(jiﬁ? Hgd(j,r)b However, weak equivariance is desirable computationally!
omain distinct
Canonicalization no no noifn > d noifn > d 3F : — . _ : ;
T e e e (Lt Towiy Defn. Stabilizer of vi G, = {g : gv = v}. Stable function satisfies G, C Gy, V.
: _ n n2 d—1 . . . . . .
Weighted frame | N < (n—1)d | § <N <nT0 | N < (d=D!,7) | N <2(d= D7) Stable functions: special function class for which weak equivariance suffices
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*Definition can be generalized to picking out orbit representatives when Vv is self-symmetric

Table 1. Summary of main results. For various group actions, we show lower and upper bounds on the minimal cardinality NV for which a

continuity-preserving frame or weighted frame exists, and whether a continuous canonicalization exists (in which case N = 1). The a2 : : N o C N . : : N
N = oo result for unweighted SO(d) frames is proven only when d = 2 (although we conjecture it holds for general d > 2 as well). Wea|<|>’ eq ulvari ath | ! Stable | > ECI ulvari ath

Can the ideas of frame averaging still be applied efficiently to such groups? _ frame ) QCUHCJ[IOHJ g function J

Frame: afunction F : V- 2% F(gv) = g% (v), applied via “averaging”
How do we parametrize stable functions as learnable networks?

Solution: Robust Frames

) |—>f(v) o Special case: group averaging Goal: Construct continuity-preserving frames that are efficient to apply Example: For SO(2) acting on szn,f; R2X1 _y R2XNM ¢ ctable iff f(0) = 0
| FW)] fO) = f) ——Zf(g 'v) An equivariant weighted frame i : V — 9(G) is an equivariant map to the space
<0 P(G) of probability measures on G, i.e. u(gv) = the push forward of u(v) by g Stable frames: alternative that offloads stability to the frame. E.g. for SO(2),
1. weights rotations 8 and —6 equally in each u(v)
. . . . . . A._’ VWeighted average
Advantages over equivariant architectures: flexible, simpler to implement A v .
° o weighted frame S / g\ f(V) —> f(v) — _gN,u(V)[ f(gv)] .
= 2 L. . w2 : Experiments
Canonicalization) . to L - _ : : :
[ g Averaging ) v ® 8 S size of frame = max,Supp(u(1)) For permutations acting on R*", our weighted frame works best:
) V 2V Task: Classity MNIST digit based on unordered point cloud | > :’
Seemingly modest goal: : t | ¥
quwarlan ST oo
« 0 @ D We relax equivariance to weak We'ghte;j[rame : _— - §
Continuous Y - Continuous invariant equivariance at Self—symmetmc INpuUts v, 120°  240° 180° 300° mll\zllglellill\iriar?ct:eo et czc;rsacy( ) Methods: no canonicalization, a discontinuous
: Canonicalization : - - . : Ce ' canonicalization (sorting along one a><|s) sampling
function f function f which suffices to ensure output Discontinuous Canonicalization 85.6
\_ ) , , Weakly Equivariant Robust Frames 28 7 25 elements from the robust frame p°r, and
U o invariance Welghted Frame I I Reynolds Operator 29 6 sampling 25 elements from S, uniformly
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For some group actions, a canonicalization that preserves continuity can We verify a discontinuity in a trained point cloud network:
seem hard to construct. I he inturtive options below are discontinuous; robust

frame

Metric: average pairwise distance in neural

Degenerate point network value between point clouds in a

Lexicographic Sort | Rotate by Max r

. . . . cloud input neighborhood of the hypothesized
S acting on R2*" SO(2) acting on R2*" Permutations: Consider the action of §, on point clouds X € Raxn discontinuous input vs random input
n
S . -1 _ T
-3 3 4- _3 3 4_ //t n(X) T Z [FDaNSd_l(g o argsort(a X))ég Pairwise Error Metric | 1, xo near a singularity b | z1, x2 near a generic point g
m 7 8 92 es, We train the O(3)-equivariant network 10T) Tzl 1 1038 17035¢.5
_8 7 2_ ] | q 8 2(d—1) from the equiadapt library [2] on ||.f(C(aJl>gff})(<|3(xz>>|l 0.0406 0.0009
Ifar 1> is a continuity-preserving weighted frame with O(n ) elements. ModelNet40, and verify that the end-to- el
i i i 2)( end function is discontinuous near a Table 3. Average distance between pairs of points, near a singular point cloud and near a random point cloud.
m g 3-;)1 421 Rotations: Consider the action of SO(2) on point clouds X € R=*". A degenerate (rank |) point cloud b . Empirically, there isn't  valid limiting value at bt

continuity-preserving weighted frame orients by angle, and weights by radius:

Future Work
. . . C : 5 Rotated Inputs * Stronger notions of smoothness, e.g. Lipschitz continuity * Analysis of efficiency of sampling from weighted frames
Is there any canonicalization that PI’GSGI’VGS CO”U”U/W fOI’ these actions: * Lower bounds on the size of weighted SO(d) frames * Practical implementation and empirical analysis
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