What is the future of equivariant learning? Hannah Lawrence, MIT

Hannah Lawrence, MIT NVIDIA GenAIR Seminar

What is equivariant learning?

convolutional layer

convolutional layer

convolutional layer

translate

translate

cat

But, not all data is images + text

Al for Science: the next frontier

Materials

Protein folding

Drug discovery

Spherical functions

Small molecules and proteins

Graphs and sets

3D scans and objects

Data may be scarce or expensive to collect

Spherical functions

Small molecules and proteins

Graphs and sets

3D scans and objects

"chair"

"chair"

"chair"

"good drug for disease X"

"good drug for disease X"

"good drug for disease X"

Let's build this into our machine learning pipeline!

Let's build this into our <u>network architecture</u>!

Equivariance: f(gx) = gf(x)

Equivariance: f(gx) = gf(x)

Equivariant Network

Equivariance: f(gx) = gf(x)

Rotate input

Equivariance: f(gx) = gf(x)

Equivariance: f(gx) = gf(x)

Rotate input

Main idea of equivariant learning

Equivariant functions

True function f

All functions

Main idea of equivariant learning

Equivariant functions

True function f

Restrict neural network architectures to only represent equivariant functions! All functions

Main idea of equivariant learning

Equivariant functions

True function f

Restrict neural network architectures to only represent equivariant functions!

All functions

"Inductive bias" for the appropriate symmetry structure, known to occur in your data

Why encode these symmetries?

- Like CNNs, they encode properties that we know our data has
 - The network doesn't have to *learn* these invariances, so it will have better sample complexity! (**verified empirically + theoretically**)
 - It can generalize to unseen translations, rotations, etc
- Faster than data augmentation, which is especially intractable for things like permutations

How do you encode these symmetries?

Early work on architectures: generalize convolution to work with new data types!

Image convolution: **translate** a filter all around the image

How do you encode these symmetries?

Early work on architectures: generalize convolution to work with new data types!

Image convolution: translate a filter all around the image

Spherical convolution: rotate a filter all around the spherical function

Gets even more complicated!

Pairwise **Tensor Products** Input Degree 0: $\left[c_0^0\right]$ $\left[c_{0}^{0}\right]$ $[c_0^0]$ c_{0}^{0} c_{0}^{1} $\begin{bmatrix} c_0^0 \end{bmatrix} \begin{bmatrix} c_0^1 & c_1^1 \end{bmatrix}$ Degree 1: $c_0^1 x + c_1^1 y$ $c_1^{\mathbf{I}}$ $\begin{bmatrix} c_0^0 \end{bmatrix} \begin{bmatrix} c_0^2 & c_1^2 & c_2^2 \end{bmatrix}$ c_0^2 Degree 2: $c_0^2 x^2 + c_1^2 xy + c_2^2 y^2$ c_{1}^{2} $[c_0^1 c_1^1]$ c_{2}^{2} • c_0^{1} c_0^d c_1^d Degree d: $c_0^d x^d + \ldots + c_d^d y^d$ c_0^2 $\begin{array}{c} c_1^2 \\ c_2^2 \\ \end{array}$ C_d^d

Clebsch-Gordan Decomposition

Linear Layer

$$W^{0} \rightarrow MLP$$

 W^{1}
 W^{2}

 $\times W^3$

 $\times W^4$

Equivariant nets have been successful

Especially in low-data regimes, and for big groups (e.g. permutations)

The bitter lesson

- "general methods that leverage computation are ultimately the most effective, and by a large margin"
- "...methods that continue to scale with increased computation even as the available computation becomes very great"

Example: AlphaFold3

The bitter lesson

- "general methods that leverage computation are ultimately the most effective, and by a large margin"
- "...methods that continue to scale with increased computation even as the available computation becomes very great"
- "...researchers seek to leverage their human knowledge of the domain, but the only thing that matters in the long run is the leveraging of computation. These two need not run counter to each other, but in practice they tend to"

1. Canonicalization

Outline

2. Positional Encodings

3. lokenization

What's "wrong" with equivariant nets?

- Architecture is more complicated than your average transformer
- Specialized engineering required for normalizing, optimization, GPU usage — still being actively developed!
 - Often, slower forward passes (e.g. Equiformer)
- No way of turning a pretrained black-box (closed source) architecture into an equivariant one

Part 1: Canonicalization

At a high level...

Past approaches:

Build equivariance into the architecture

Or

Data augmentation during training — expensive/less effective

At a high level...

Past approaches:

Build equivariance into the architecture

or

Data augmentation during training — expensive/less effective

Canonicalization:

Build equivariance into the **data pre-processing**

"Canonical"

Canon: "a body of principles, rules, standards, or norms"

Canonical: "conforming to a general rule or acceptable procedure" or "reduced to the canonical form"

"Canonical" in images

"Canonical" in images

"Canonical" in images

(→ 98% prob. cat

→ 98% prob. cat

98% prob. cat

98% prob. cat

Again, in summary:

Past approaches:

Build equivariance into the architecture

or

Data augmentation during training — expensive/less effective

Canonicalization:

Build equivariance into the **data pre-processing**

Classical idea, but recent excitement in ML!

FRAME AVERAGING FOR INVARIANT AND **EQUIVARIANT NETWORK DESIGN**

Omri Puny^{*1} **Matan Atzmon**^{*1} **Heli Ben-Hamu**^{*1} **Ishan Misra**² Aditya Grover² Edward J. Smith² Yaron Lipman² ¹Weizmann Institute of Science ²Facebook AI Research

ICLR 2022

Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance

Tien Dat Nguyen Ayhan Suleymanzade Jinwoo Kim Hyeokjun An Seunghoon Hong KAIST

NeurIPS 2023

SE(3) Equivariant Graph Neural Networks with Complete Local Frames

Weitao Du^{*†1} He Zhang^{*†2} Yuanqi Du^{†3} Qi Meng⁴ Wei Chen^{†1} Nanning Zheng² Bin Shao⁴ Tie-Yan Liu⁴

Sergey N. Pozdnyakov and Michele Ceriotti Laboratory of Computational Science and Modelling, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland sergey.pozdnyakov@epfl.ch,michele.ceriotti@epfl.ch

Equivariance with Learned Canonicalization Functions

Sékou-Oumar Kaba^{*12} Arnab Kumar Mondal^{*12} Yan Zhang³ Yoshua Bengio⁴² Siamak Ravanbakhsh¹²

Weitao Du^{1*} Yuangi Du^{2*}

Shuiwang Ji³

ICML 2023

ICML 2022

Equivariant Adaptation of Large Pretrained Models

Arnab Kumar Mondal*[†] Mila, McGill University ServiceNow Research

Siba Smarak Panigrahi^{*} Mila, McGill University

Sékou-Oumar Kaba Mila, McGill University

Sai Rajeswar ServiceNow Research

Siamak Ravanbakhsh Mila, McGill University

NeurIPS 2023

Smooth, exact rotational symmetrization for deep learning on point clouds

NeurIPS 2023

A new perspective on building efficient and expressive **3D** equivariant graph neural networks

> Limei Wang^{3*} Dieqiao Feng² Guifeng Wang⁴

Carla P Gomes²

Zhi-Ming Ma¹

FAENet: Frame Averaging Equivariant GNN for Materials Modeling

Alexandre Duval^{*12} Victor Schmidt^{*2} Alex Hernandez Garcia² Santiago Miret³ Fragkiskos D. Malliaros¹ Yoshua Bengio²⁴ David Rolnick²⁵

ICML 2023

A Canonicalization Perspective on Invariant and Equivariant Learning

George Ma^{*1} Vifei Wang^{*2} Derek Lim² Stefanie Jegelka³ Visen Wang^{4,5†} ¹ School of EECS, Peking University ² MIT CSAIL ³ TUM CIT/MCML/MDSI & MIT EECS/CSAIL ⁴ State Key Lab of General Artificial Intelligence, School of Intelligence Science and Technology, Peking University ⁵ Institute for Artificial Intelligence, Peking University

NeurIPS 2024

NeurIPS 2023

Canonicalization vs Equivariant Architecture

- Recall these aspects of equivariant architectures:
 - compatible with any downstream architecture
 - practices will suffice?
 - weights; it only affects the input and the output

• Much more complicated than your average transformer \rightarrow canonicalization is

• Specialized engineering required for normalizing, optimization, GPU usage \rightarrow canonicalization is a preprocessing step, so maybe standard optimization

• No way of turning a pretrained black-box (closed source) architecture into an equivariant one \rightarrow canonicalization is independent of the architecture

"Put the round inflated part at the top"

"Put the round inflated part at the top"

With respect to translations

With respect to translations

"Put the mean at 0"

With respect to translations

With respect to translations

How to canonicalize?

"Put the central atom at (0,0)"

With respect to <u>rotations</u>

With respect to <u>rotations</u>

????

furthest

furthest

furthest

furthest

Canonical orientation
furthest

Canonical orientation

"Rotate so that the point furthest from the center is on the x-axis"

furthest

furthest

furthest

Perturb slightly

furthest

Perturb slightly

furthest

Perturb slightly

furthest

Perturb slightly

Canonical orientation

Very different! :(

furthest

Perturb slightly

Continuity means: small change in input \rightarrow small change in output. So, not continuous!

Canonical orientation

furthest

Perturb slightly

Continuity means: small change in input \rightarrow small change in output. So, not continuous!

Canonical orientation

Perturb slightly

Continuity means: small change in input \rightarrow small change in output. So, not continuous!

Canonical orientation

Perturb slightly

Continuity means: small change in input \rightarrow small change in output. So, not continuous!

Canonical orientation

Very different! :(

Perturb slightly

Continuity means: small change in input \rightarrow small change in output. So, not continuous!

Canonical orientation

 $+.007 \times$

"panda" 57.7% confidence

Why is this bad?

"nematode" 8.2% confidence

"gibbon" 99.3 % confidence

How fundamental is this problem?

What if we were smarter?

Canonicalize to a standard coordinate frame via rotation *R*

Canonicalize to a standard coordinate frame via rotation *R*

Canonicalize to a standard coordinate frame via rotation *R*

Is this end-to-end function continuous?

Canonicalize to a standard coordinate frame via rotation *R*

Is this end-to-end function continuous? Property: "continuity preservation"

Continuity is sometimes impossible!

- We show that canonicalization preserves end-to-end continuity iff the canonicalization mapping itself is continuous
- For certain symmetries, there is **no** continuous canonicalization:
 - Permutations on sets with features dimension $d \ge 2$
 - Rotations of ordered point clouds of ≥ 3 points

Dym, Lawrence, and Siegel, ICML 2024

It turns out: there's a tradeoff between computation time and continuity

Canonicalization

Discontinuous

Canonicalization

Discontinuous

Full data

augmentation

Continuous

Canonicalization

Discontinuous

Cheap

Canonicalization

Full data augmentation

Frames

Frames

Full data

augmentation

Continuity depends on size!

Cost depends on size!

Continuous

Frame-averaging

Subset of G, hopefully not all of G

Canonicalization

Discontinuous

Cost depends on size!

Canonicalization Group Averaging Frames

Frames

Full data

augmentation

Continuity depends on size!

Randomized canonicalization!

Canonicalization

Discontinuous

Canonicalization	
Group Averaging	
Frames	
Randomized Canonicalization	

Frames

Full data

augmentation

Continuity depends on size!

Cost depends on size!

Randomized canonicalization!

> By randomizing, preserve continuity and remains cheap/ flexible!

Canonicalization

Discontinuous

Frames

Full data

augmentation

Continuity depends on size!

Cost depends on size!

weighted frame

How do we get back continuity?

weighted frame

Continuity-preserving weighted frames can be much smaller than continuitypreserving unweighted frames! For instance, n! vs $n^{O(d)}$ for S_n acting on $\mathbb{R}^{d \times n}$

Empirical Results

Invariance Method	Test Accuracy (%)
No Invariance	25.5
Discontinuous Canonicalization	85.6
Robust Frames (Sec. 4.1)	75.5 / 85.6 / 87.1 / 88.4
Robust Frames (Sec. 4.2)	74.2 / 85.9 / 87.6 / 88.7
Reynolds Operator	21.0 / 22.4 / 22.6 / 22.6

Table 2. Comparison between permutation canonicalization and various frames. The right hand column shows 1/5/10/25 samples drawn during testing for the weighted frames.

Toy permutation task: better than Reynolds

Pairwise Error Metric	x_1, x_2 near a singularity b	x_1, x_2 near a generic point g
$rac{ C(x_1) - C(x_2) }{ C(x_1) }$	1.1088	1.7035e-5
$\frac{ f(C(x_1)) - f(C(x_2)) }{ f(C(x_1)) }$	0.0406	0.0009

Table 3. Average distance between pairs of points, near a singular point cloud and near a random point cloud.

Trained point cloud network has discontinuities

Table 3: Results for S_n equivariant node classification on PATTERN. We report test accuracy at the best validation accuracy, along with the standard deviation for GA and Ours where predictions are stochastic. The results for GNN baselines are from [27].

method	pretrain.	Accuracy ↑
GCN [48], 16 layers	-	85.614
GAT [99], 16 layers	-	78.271
GatedGCN [11], 16 layers	-	85.568
GIN [103], 16 layers	-	85.387
RingGNN [16], 2 layers	-	86.245
RingGNN [16], 8 layers	-	diverged
PPGN [58], 3 layers	-	85.661
PPGN [58], 8 layers	-	diverged
ViT-GA, 1-sample	-	76.956 ± 0.033
ViT-GA, 10-sample	-	83.220 ± 0.057
ViT-GA, 1-sample	ImageNet-21k	81.933 ± 0.075
ViT-GA, 10-sample	ImageNet-21k	84.641 ± 0.020
ViT-FA	-	71.377
ViT-FA	ImageNet-21k	80.015
ViT-Canonical.	-	85.825
ViT-Canonical.	ImageNet-21k	86.534
ViT-PS (Ours), 1-sample	-	85.868 ± 0.017
ViT-PS (Ours), 10-sample	-	85.989 ± 0.011
ViT-PS (Ours), 1-sample	ImageNet-21k	86.573 ± 0.030
ViT-PS (Ours), 10-sample	ImageNet-21k	$\textbf{86.650} \pm \textbf{0.010}$

"Learning Probabilistic Symmetrization for Architecture Agnostic Equivariance" by Kim et al, NeurIPS 2023

Lots of exciting directions in canonicalization:

- Efficient, randomized canonicalization
- Empirical exploration of continuity problem how important in practice?
- Permutation canonicalization for language models (e.g. in-context learning, as well as language models for scientific data)
- Statistical tests: is your dataset already canonicalized (like balloons)? Are language datasets like this? What should you do if it is & what does it tell us about the nature of equivariance?

Part 2: Positional Encodings

Vanilla transformer is permutation invariant: would predict the same next word for both of these

Solution: append a unique vector to each **position**

Reminder: positional encodings

the

Reminder: positional encodings

Reminder: positional encodings Linear Concat in the The cat Scaled Dot-Product • • • Attention Linear Linear Linear Κ

Reminder: positional encodings

Embedding Dimension

Sebastian Raschka

\mathbf{W}_q^{\intercal} n

Embedding size $d_k = d_a$ number $\mathbf{W}_k^{\mathsf{T}}$ n X of tokens Weight Inputs

Sebastian Raschka

 \rightarrow Attention weights = inner products only depend on **relative** position between words, not absolute position

 \rightarrow Attention weights = inner products only depend on **relative** position between words, not absolute position

 \rightarrow Length generalization of transformers! (Train on short text, test on long text)

Group symmetry view on PEs

Sinusoidal positional encodings

Rotary positional encodings

Both of these: group representations of the group of cyclic translations (equivalently, 2D rotations)

Defining properties of irreps = useful properties of PEs

Composition under attention:

Symmetry g acts on object via matrix $\rho(g)$

 $\rho(g_1)\rho(g_2) = \rho(g_1g_2)$

 $\left\{\begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Rotary positional encodings

Group symmetry view on PEs

Sinusoidal positional encodings

Notion of varying scale, or hierarchy:

Common for irreps in many groups

Related to: forming a functional basis

Positional encodings as group representations

Table 1. Examples of positional encodings, interpreted as group representations. Y_{ℓ}^{m} denotes spherical harmonics, v_{i} the *i*-th eigenvector of the graph Laplacian, J(r) a radial function, and $R^{2\times 2}(\theta)$ is the 2×2 rotation matrix by θ .

Data Type	Group	Encoding	Ref.
Text	T_{-}	$(x) \mapsto \{(\cos(\alpha x), \sin(\alpha x))\}_{\alpha}$	Vaswani et al. (2017)
Image	$T \times T$	$(x,y) \mapsto \{(\cos(\alpha_1 x + \alpha_2 y), \sin(\alpha_1 x + \alpha_2 y))\}_{\alpha_1,\alpha_2}$	Dosovitskiy et al. (2021)
Molecule	SO(3)	$(r, \theta, \phi) \mapsto \{Y_{\ell}^m(\theta, \phi)J(r)\}_{\ell, m}$	Thomas et al. (2018)
Graph	$S_{ \mathcal{X} }$	$(x) \mapsto \{v_i(x)\}_i$	Lim et al. (2023)
Any (learned embedding)	$S_{ \mathcal{X} }$	$x\mapsto \texttt{one_hot}(x)$	Gehring et al. (2017)
Text (spherical embedding)	$SO(2)^{n/2}$	$(m) \mapsto \{\bigoplus R^{2 \times 2}(m\alpha)\}_{\alpha}$	Su et al. (2021)
\mathcal{X} , homogeneous space	G	$x \mapsto \{\rho_{\lambda}(x^G)\}_{\lambda}$	Ours

Positional encodings as group representations

Table 1. Examples of positional encodings, interpreted as group representations. Y_{ℓ}^m denotes spherical harmonics, v_i the *i*-th eigenvector of the graph Laplacian, J(r) a radial function, and $R^{2\times 2}(\theta)$ is the 2×2 rotation matrix by θ .

Data Type	Group	Encoding	Ref.
Text	T	$(x) \mapsto \{(\cos(\alpha x), \sin(\alpha x))\}_{\alpha}$	Vaswani et al. (2017)
Image	$T \times T$	$(x,y) \mapsto \{(\cos(\alpha_1 x + \alpha_2 y), \sin(\alpha_1 x + \alpha_2 y))\}_{\alpha_1,\alpha_2}$	Dosovitskiy et al. (2021)
Molecule	SO(3)	$(r, \theta, \phi) \mapsto \{Y_{\ell}^m(\theta, \phi)J(r)\}_{\ell, m}$	Thomas et al. (2018)
Graph	$S_{ \mathcal{X} }$	$(x) \mapsto \{v_i(x)\}_i$	Lim et al. (2023)
Any (learned embedding)	$S_{ \mathcal{X} }$	$x \mapsto \texttt{one_hot}(x)$	Gehring et al. (2017)
Text (spherical embedding)	$SO(2)^{n/2}$	$(m) \mapsto \{\bigoplus R^{2 \times 2}(m\alpha)\}_{\alpha}$	Su et al. (2021)
\mathcal{X} , homogeneous space	G	$x \mapsto \{\rho_{\lambda}(x^G)\}_{\lambda}$	Ours

Also: prescription for how to design positional encodings for new data

Positional encodings break permutation invariance

Symmetry-breaking positional encodings

Lawrence*, Portilheiro*, Zhang, Kaba at ICLR 2025

Equivariant functions can't break symmetries

Equivariant functions can't break symmetries

 $x = gx \to f(x) = f(gx) = gf(x)$

This is a problem in many applications

ORIENT ANYTHING

Christopher Scarvelis * MIT CSAIL Cambridge, MA scarv@mit.edu

David Benhaim Backflip AI San Francisco, CA david@backflip.ai Paul Zhang Backflip AI San Francisco, CA paul.zhang@backflip.ai

Learn a "standard" orientation for 3D models

SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization

Qian Chen^{1,2}, Tianjian Zhang^{1,2}, Linxin Yang^{2,3}, Qingyu Han², Akang Wang^{2,3,*}, Ruoyu Sun^{2,3}, Xiaodong Luo^{2,3}, and Tsung-Hui Chang^{1,2}

 $\min_{\boldsymbol{x}} \boldsymbol{c}^{\top} \boldsymbol{x}$ s.t. $\boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}$ $\boldsymbol{x} \in \mathbb{Z}^n,$

Solving integer linear programs

It can also arise in generative modeling

Problem: If noising process introduces symmetries, they cannot be denoised

It can also arise in generative modeling

Graph Autoencoder

Embedding

Equivariant functions can't break symmetries

 $x = gx \to f(x) = f(gx) = gf(x)$

But, want equivariance when possible!

But, want equivariance when possible!

But, want equivariance when possible!

How do we even formulate this class of functions?

One solution: probabilistic

Learn an equivariant distribution $f: X \to \mathscr{P}(Y)$, such that individual samples from f(x) can break the symmetry of *x*

Extension of SBS perspective of outputting a set!

One solution: probabilistic

One solution: probabilistic

One solution: probabilistic

How do you learn equivariant distributions?

Noise outsourcing

Turn a regular neural network $\phi : \mathscr{X} \times [0,1] \to \mathscr{Y}$ into a network that outputs distributions, $\phi' : \mathscr{X} \to \mathscr{P}(\mathscr{Y})$, by sampling noise ϵ

Quick definition: \tilde{g} **Conditions**: Let $\gamma(X)$ be a canonicalization, and \tilde{g} be a

Conditions: Let $\gamma(X)$ be a ca probabilistic inverse of $\gamma(X)$.

Solution: symmetry-breaking input

Symmetry-breaking positional encoding

Practical corollary: Y|X is equivariant iff, for some $f: X \times G \times (0,1) \rightarrow Y$ jointly equivariant in X and g,

 $Y \stackrel{a.s.}{=} f(X, \tilde{g}, \epsilon)$ "Arbitrary randomness"

Solution: symmetry-breaking input

Practical corollary: Y|X is equivariant iff, for some

Symmetry-breaking positional encoding

 $f: X \times G \times (0,1) \rightarrow Y$ jointly equivariant in X and g,

Generalization to "noise injection": can let \tilde{g} more generally be a random variable with no self-symmetries and $\tilde{g} | X \sim h \tilde{g} | h X$. Important for problems where it's hard to canonicalize!

A more convenient implementation \boldsymbol{X} Canonicalization **Equivariant** $\longrightarrow \tilde{g} \in \{0^\circ, 60^\circ, \dots, 300^\circ\}$ Network *f* Method

To pass g into a neural network, fix or learn a vector vand pass gv as input "symmetry-breaking positional encoding"

A more convenient implementation $\boldsymbol{\chi}$ **Equivariant** Canonicalization $\longrightarrow \tilde{g} \in \{0^\circ, 60^\circ, \dots, 300^\circ\}$ Network *f* Method p

SymPE = symmetry-breaking positional encoding

A more convenient implementation $\boldsymbol{\chi}$ Canonicalization **Equivariant** → $\tilde{g} \in \{0^\circ, 60^\circ, ..., 300^\circ\}$ Method Network *f*

Figure out how much symmetry to break

SymPE = symmetry-breaking positional encoding

A more convenient implementation $\boldsymbol{\chi}$ Equivariant Canonicalization → $\tilde{g} \in \{0^\circ, 60^\circ, ..., 300^\circ\}$ -Method Network *f* Break the symmetry by Figure out how much inputting a "SymPE" $\tilde{g}v$ symmetry to break for a learned or fixed v

SymPE = symmetry-breaking positional encoding

Experiment: Graph generation with diffusion model

Problem: Noising process is likely to introduce symmetries that cannot be denoised

Experiment: Digress discrete diffusion with graph transformer. Use graph network (IGN) to sample \tilde{g}

Method	NLL
DiGress	129.7
DiGress + noise	126.5
DiGress + SymPE	30.3

Denoising

Part 3: Tokenization

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

Autoregressive learning task: try to predict the next word, one at a time

The cat

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

Data: comes in an ordered sequence, e.g. paragraphs of text. How do you turn this into a learning task?

Data: comes in an ordered *sequence*, e.g. paragraphs of text. How do you turn this into a learning task?

How do LLMs process data, concretely? The the in cat • • •

How do LLMs process data, concretely?

• • •

Token embeddings

Learn a vector embedding for every word/token in a vocabulary (size 30-100k for natural language)

7.4

How do LLMs process data, concretely?

Neural Net

Token embeddings

→ output: a **distribution over all possible words**

input: embeddings of all the tokens in the context window

How do LLMs process data, concretely?

Neural Net

Token embeddings

input: embeddings of all the tokens in the context window

→ output: a **distribution over all possible words**

• • •

Hat: 54%

Chair: 19%

Window: 9%

Yard: 18%

part of idea of subword tokenization

• Want to generalize out of distribution (both in meaning and compressibility):

part of idea of subword tokenization

E.g. unseen word: Doomscroll

• Want to generalize out of distribution (both in meaning and compressibility):

• Want to generalize out of distribution (both in meaning and compressibility): part of idea of subword tokenization

• LLMs don't train well on neurally compressed text ("Training LLMs over Neurally Compressed Text", Lester et al 2024)

• Want to generalize out of distribution (both in meaning and compressibility): part of idea of subword tokenization

- LLMs don't train well on neurally compressed text ("Training LLMs over Neurally Compressed Text", Lester et al 2024)
- Tokenizations that are equivalently good "compressors" train very differently (e.g. numbers, "Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs", Singh & Strouse 2024)
How to apply these ideas to tokenizing other types of data?

Spherical functions

Small molecules and proteins

Graphs and sets

3D scans and objects

Must be able to recover the molecule (to high accuracy) from the sequence of tokens

The words must come from a **discrete** vocabulary, so that the LLM can learn a separate embedding for each

The words must be **ordered** to enable the autoregressive LLM training paradigm (next-token prediction)

the autoregressive LLM training paradigm (next-token prediction)

Permutation canonicalization returns!

Molecule Tokenization Uses Equivariance

ESM3 uses geometric attention to encode local structure token per residue; decode from all residues at once

Molecule Tokenization Uses Equivariance

Encoder is rotation invariant:

- •Uses ordering of amino acids to define neighborhoods
- •All-to-all "geometric attention" within neighborhoods
 - •Means: define local coordinate frame using backbone, then convert to global frame before performing attention

Open questions

- How to tokenize molecules both proteins and others?
 - Want: generalizability outside training data, efficiency, learnability
 - Inductive bias invariance to (local) rotation, permutation (relevant for non-proteins)?
- Byte Latent Transformer is recent, tokenization-free method: is it effective for multi-modal and/or non-text data too?
 - Note: still requires canonicalization!

Concluding thoughts

- highly scalable methods
- Even if the specific methods (tokenization, positional encodings, the search space

Thanks! Questions?

Inductive bias isn't dead! But: emphasis on flexibility + incorporation into

canonicalization) are eventually replaced by learnable substitutes: guides

• Other directions not discussed: learnable symmetries, soft loss objectives