What is the future of
equivariant learning?

Hannah Lawrence, MIT
NVIDIA GenAlIR Seminar



What is equivariant learning?
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But, not all data is images + text
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Al tfor Science

Protein folding

Materials

Drug discovery
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New, geometric data types

Small molecules and proteins 3D scans and objects



Data may be scarce or expensive to collect

Small molecules and proteins 3D scans and objects



Data contains symmetries!
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Data contains symmetries!
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Let’s build this into our machine
learning pipelinel



Let’s build this into our
network architecture!



Equivariance: f(gx) = g2f(x)
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Main idea of equivariant learning

All functions

Equivariant

functions

True function f




Main idea of equivariant learning

All functions

Equivariant

functions

True function f

Restrict neural network
architectures to only represent
equivariant functions!



Main idea of equivariant learning

All functions

Equivariant

functions

True function f

Restrict neural network
architectures to only represent
equivariant functions!



Why encode these symmetries?

® |ike CNNs, they encode properties that we know our data has

® The network doesn’t have to learn these invariances, so it will have
better sample complexity! (verified empirically + theoretically)

® |t can generalize to unseen translations, rotations, etc

® Faster than data augmentation, which is especially intractable for things
ike permutations



How do you encode these symmetries?

Early work on architectures: generalize convolution to work with new data
types!

Image convolution: translate a filter all
around the image



How do you encode these symmetries?

Early work on architectures: generalize convolution to work with new data
types!

Image convolution: translate a filter all Spherical convolution: rotate a filter all
around the image around the spherical function



Gets even more complicated!
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Equivariant nets have been successful
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The bitter lesson

"general methods that leverage computation are ultimately the most
effective, and by a large margin”

"...methods that continue to scale with increased computation even as the available
computation becomes very great”

Example: AlphaFold3
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The bitter lesson

"general methods that leverage computation are ultimately the most
effective, and by a large margin”

"...methods that continue to scale with increased computation even as the available
computation becomes very great”

"...researchers seek to leverage their human knowledge of the domain, but the only
thing that matters in the long run is the leveraging of computation. These two need not
run counter to each other, but in practice they tend to”




Outline

2. Positional Encodings



What's “wrong” with equivariant nets?

® Architecture is more complicated than your average transtformer

® Specialized engineering required for normalizing, optimization, GPU
usage — still being actively developed!

® Often, slower forward passes (e.g. Equiformer)

® No way of turning a pretrained black-box (closed source)
architecture into an equivariant one

& _ @ Often, rigid constraint on input type



Part 1: Canonicalization



At a high level...

Past approaches:

Build equivariance into the
architecture

or

Data augmentation during
training — expensive/less
effective



At a high level...

Past approaches: Canonicalization:
Build equivariance into the Build equivariance into the data
architecture pre-processing
or

Data augmentation during
training — expensive/less
effective



“"Canonical”

Canon: “a body of principles, rules, standards, or norms”

Canonical: “conforming to a general rule or acceptable procedure” or

"reduced to the canonical form”

Ao 1

)\n 1

Sources: Wikipedia, Merriam-Webster



"Canonical” in images
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Canonicalization — Equivariance




Canonicalization — Equivariance
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Canonicalization — Equivariance
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Again, In summary:

Past approaches: Canonicalization:
Build equivariance into the Build equivariance into the data
architecture pre-processing
or

Data augmentation during
training — expensive/less
effective



Classical idea, but recent excitement in ML
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Canonicalization vs Equivariant Architecture

® Recall these aspects of equivariant architectures:

o Much morecomplicated-thanyouraverage-transformer — canonicalization is
compatible with any downstream architecture

COTOF RO Yoot oR—GFo-usage-—

‘ AVYAa AYAa Al AYa AVAYAa AVWA AYAa

canonicalization is a preprocessing step, so maybe standard optimization
practices will suffice?

o No-way-eotturningapretratned-black-box{closed-source)architecture-intoar
egdivariart-ore — canonicalization is independent of the architecture
weights; it only affects the input and the output




How to canonicalize?

“Put the round inflated part at the top”
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How to canonicalize?

“Put the round inflated part at the top”



How to canonicalize?
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How to canonicalize?

"Put the mean at 0"
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How to canonicalize?

With respect to translations



How to canonicalize?

“Put the central atom at (0,0)"

With respect to translations



How to canonicalize?

With respect to rotations




How to canonicalize?

2272

With respect to rotations




How to canonicalize?

“Rotate so that the point
is on the x-axis”
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How to canonicalize?
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How to canonicalize?
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Continuity means: small change in input — small change in output. So, not
continuous!
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Why is this bad?

+ .007 X

“panda” “nematode” “g1bbon”
57.7% confidence 8.2% confidence 090.3 9% confidence



How fundamental is this problem?

What if we were smarter?



The goal: ena-to-end continuity
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The goal: ena-to-end continuity

» » » Energy ¢
Undo rotation

Canonicalize to a R
standard
coordinate frame

via rotation R

This network Is continuous

Is this end-to-end function continuous?
Property: “continuity preservation”



Continuity is sometimes impossiblel

® \e show that canonicalization preserves end-to-end continuity iff the
canonicalization mapping itself is continuous

® [or certain symmetries, there is no continuous canonicalization:

® Permutations on sets with features dimension d > 2

® Rotations of ordered point clouds of > 3 points

Dym, Lawrence, and Siegel, ICML 2024



How do we get back continuity?

It turns out: there’s a tradeoff between computation time and continuity
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How do we get back continuity?
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Frame-averaging
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How do we get back continuity?
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How do we get back continuity?
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How do we get back continuity?

[Canonicalization]

Randomized

canonicalization! [ Group }

Averaging

By randomizing, preserve Frames
continuity and remains cheap/
flexible!
Canonicalization Crames Full data
augmentation
Discontinuous Continuity depends on size! Continuous

Cheap Cost depends on size! Expensive
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How do we get back continuity?
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Continuity-preserving weighted frames can be much smaller than continuity-
dXn

preserving unweighted frames! For instance, n! vs n%? for S, acting on |



Empirical Results

Invariance Method Test Accuracy (%)
: Table 3: Results for S,, equivariant node classification on PATTERN. We report test accuracy at the
No Invariance 2 best validati along with the standard deviation for GA and Ours where predicti
Discontinuous Canonicalization R5 6 est validation accuracy, along wi e standard deviation for and Ours where predictions are

stochastic. The results for GNN baselines are from [27].

Robust Frames (Sec. 4.1)
Robust Frames (Sec. 4.2)

75.5/85.6/87.1/88.4
74.2/85.9/87.6/88.7

method pretrain. Accuracy T
Reynolds Operator 21.0/22.4/22.6/22.6 GCN [48], 16 layers ] 85 614
GAT [99], 16 layers - 78.271
Table 2. Comparison between permutation canonicalization and GatedGCN [11], 16 layers - 85.568
various frames. The right hand column shows 1/5/10/25 samples GIN [103], 16 layers ) 85.387
, , , RingGNN [16], 2 layers i 86.245
drawn during testing for the weighted frames. RingGNN [16], 8 layers ) diverged
PPGN [58], 3 layers - 85.661
. . PPGN [58], 8 layers - diverged
Toy permutation task: better than Reynolds TN e— e
VIT-GA, 10-sample 83.220 £ 0.057

VIT-GA, 1-sample
VIT-GA, 10-sample

ImageNet-21k
ImageNet-21k

81.933 + 0.075
84.641 + 0.020

ViT-FA - 71.377

ViT-FA ImageNet-21k 80.015

ViT-Canonical. - 85.825

ViT-Canonical. ImageNet-21k 86.534
Pairwise Error Metric | x1, T2 near a singularity b | 1, x2 near a generic point g ViT-P$ (Ours), 1-sample i 85.868 + 0.017
Ictes)—C Cea)l 1.1088 1.7035e-5 ViT-PS (Ours), 10-sample - 85.989 + 0.011
[1f(C(z1))—f(C(z2))]] 0.0406 0.0009 VIT-PS (Ours), 1-sample ImageNet-21k  86.573 £ 0.030
[1F(C(z1))]] ViT-PS (Ours), 10-sample  ImageNet-21k  86.650 £ 0.010

Table 3. Average distance between pairs of points, near a singular point cloud and near a random point cloud.

Trained point cloud network has discontinuities

“Learning Probabilistic Symmetrization for Architecture Agnostic
Equivariance” by Kim et al, NeurlPS 2023



Lots of exciting directions in canonicalization:

® [fficient, randomized canonicalization
® Empirical exploration of continuity problem — how important in practice?

® Permutation canonicalization for language models (e.g. in-context
learning, as well as language models for scientitic data)

® Statistical tests: is your dataset already canonicalized (like balloons)? Are
language datasets like this? What should you do if it is & what does it tell
us about the nature of equivariance?

LIR SR 1 G G 35 4



Part 2: Positional Encodings



Reminder: positional encodings
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Vanilla transtormer is permutation invariant: would
predict the same next word for both of these

Solution: append a unique vector to each position



Reminder: positional encodings
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Reminder: positional encodings
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Reminder: positional encodings




Reminder: positional encodings
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Rotary Positional Encodings
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Rotary Positional Encodings
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Rotary Positional Encoadings
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between words, not absolute position



Rotary Positional Encoadings

} f\ (91=a)1°k

} \792=a)2’k

— Attention weights = inner products only depend on relative position

Word Word

1 5 k/\

between words, not absolute position

— Length generalization of transformers! (Train on short text, test on long text)



Group symmetry view on PEs

} ~ 0,=w; -k
—_ N~

iV Ve W N } S =0k
ANNNNN\ b Bmons

Sinusoidal positional encodings Rotary positional encodings

Both of these: group representations of the group of cyclic translations

(equivalently, 2D rotations)
Lim*, Lawrence*, Huang, Thiede at TAG, ICML 2023



Detining properties of irreps = useful properties of PEs

} fx 6’1=a)1-k

Symmetry g acts on object via matrix p(g)

p(81)P(&2) = p(8182) } ‘\/7 O3 = @3- Kk

Rotary positional encodings

Composition under attention:

Lim*, Lawrence*, Huang, Thiede at TAG, ICML 2023



Group symmetry view on PEs

- N Notion of varying scale, or hierarchy:
/\/\/\/\ Common for irreps in many groups

NN\N\N NS\ Related to: forming a functional basis

Sinusoidal positional encodings

Lim*, Lawrence*, Huang, Thiede at TAG, ICML 2023



Positional encodings as group representations

Table 1. Examples of positional encodings, interpreted as group representations. Y, denotes spherical harmonics, v; the i-th eigenvector
of the graph Laplacian, J(r) a radial function, and R***() is the 2 x 2 rotation matrix by 6.

Data Type Group Encoding Ref.

Text T (z) > {(cos(azx),sin(ax))}a Vaswani et al. (2017)
Image T xT (z,y) — {(cos(ar1z + a2y),sin(a1x + a2y))}a, .0,  Dosovitskiy et al. (2021)
Molecule SO(3) (r,8,¢) — {Y,;"(0,9)J(T)}e.m Thomas et al. (2018)
Graph S| x () — {vi(x) } Lim et al. (2023)
Any (learned embedding) S| x| x +— one hot(x) Gehring et al. (2017)
Text (spherical embedding) SO(2)"/? (m) = {@ R**?*(ma)}a Su et al. (2021)

X, homogeneous space G z — {px(x)}x Ours

Lim*, Lawrence*, Huang, Thiede at TAG, ICML 2023



Positional encodings as group representations

Table 1. Examples of positional encodings, interpreted as group representations. Y, denotes spherical harmonics, v; the i-th eigenvector
of the graph Laplacian, J(r) a radial function, and R***() is the 2 x 2 rotation matrix by 6.

Data Type Group Encoding Ref.

Text T (z) > {(cos(azx),sin(ax))}a Vaswani et al. (2017)
Image T xT (z,y) — {(cos(arz + a2y),sin(a1x + a2y))}a, .0,  Dosovitskiy et al. (2021)
Molecule SO(3) (r,0,0) — {Y;"(0,0)J(1)}o.m Thomas et al. (2018)
Graph S| x () — {vi(x) } Lim et al. (2023)
Any (learned embedding) S| x| x +— one hot(x) Gehring et al. (2017)
Text (spherical embedding) SO(2)"/? (m) = {P R***(ma)}a Su et al. (2021)

X, homogeneous space G z = {pr(x)} Ours

Also: prescription for how to design positional encodings for new data

Lim*, Lawrence*, Huang, Thiede at TAG, ICML 2023
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Symmetry-breaking positional
encodings

Lawrence*, Portilheiro*, Zhang, Kaba at ICLR 2025
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This is a problem

ORIENT ANYTHING

Christopher Scarvelis * David Benhaim Paul Zhang

MIT CSAIL Backflip Al Backflip Al

Cambridge, MA San Francisco, CA San Francisco, CA
scarv@mit.edu david@backflip.ai paul.zhang@backflip.ai

y
y
X
/x /
ot 4
“z

(a) Rotated shape (b) Shape in canonical orientation

Learn a “standard” orientation for
3D models

in many applications

SymILO: A Symmetry-Aware Learning Framework
for Integer Linear Optimization

Qian Chen!?2, Tianjian Zhang'-2, Linxin Yang??, Qingyu Han?, Akang Wang?>*, Ruoyu Sun?3,
Xiaodong Luo*?, and Tsung-Hui Chang'~?

min ¢' x

&

s.t. Ax < b
x € L",

Solving integer linear programs



It can also arise in generative modeling

Problem: If noising process introduces symmetries, they cannot be denoised

Slo—.

—
*—©O

Denoising



It can also arise in generative modeling

Graph Autoencoder

Sn S
[ ] -H... R

Embedding



Equivariant functions can’t break symmetries
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X = gx = fx) = f(gx) = gf(x)




But, want equivariance when possible!
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How do we even formulate this
class of functions?



One solution: probabilistic

| earn an equivariant distribution f : X = 9P(Y),

such that individual samples from f(x) can break

the symmetry of x

Extension of S

1

BS perspective of outputting a set!
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One solution: probabilistic

(Y| X =z

o

=30 1 = 30° l 92#30°+
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e . .
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How do you learn equivariant
distributions?



Noise outsourcing

Turn a regular neural network @ : & X [0,1] = % into a network that outputs
distributions, ¢': X = P(Y/), by sampling noise €

X
\ Network
ﬁ € / ¢




Quick definition: 2

Conditions: Let y(X) be a canonicalization, and g be a

probabilistic inverse of y(X).

g|x ~ Unif @
x « ()




Solution: symmetry-breaking input

Practical corollary: Y| X is equivariant iff, for some
f: XX GXxX(0,1) = Yjointly equivariant in X and g,

Y= fX.§.€)

R

Symmetry-breaking positional encoding “Arbitrary randomness”



Solution: symmetry-breaking input

Practical corollary: Y| X is equivariant iff, for some
f: XX GXxX(0,1) = Yjointly equivariant in X and g,

Y= fX.§.€)

R

Symmetry-breaking positional encoding “Arbitrary randomness”

Generalization to “noise injection”: can let ¢ more generally be a random variable with no

self-symmetries and g | X ~ hg | hX. Important for problems where it's hard to canonicalize!



A more convenient implementation

~ 1
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B Canonicalization 3 e (05 60° 200" B Equivariant
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6

To pass g into a neural network, fix or learn a vector v

and pass gv as input

“symmetry-breaking positional encoding”
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SymPE = symmetry-breaking positional encoding
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Figure out how much
symmetry to break

SymPE = symmetry-breaking positional encoding



A more convenient implementation

." € 1
p=—
. 6
Canonicalization 5 0 60" 200 — Equivariant
Method .0’ 8 € 10,60, }j Network f
‘ \\\\ 1
p=—
6

Break the symmetry by

Figure out how much inputting a “SymPE” gv

symmetry to break for a learned or fixed v

SymPE = symmetry-breaking positional encoding



Experiment: Graph generation with diffusion model

Problem: Noising process is likely to introduce symmetries that
cannot be denoiseo

Diffusion

/.H.:.H‘Q‘O—C/.:Q

Denoising

Experiment: Digress discrete diffusion with graph transtformer.

Use graph network (IGN) to sample g
Method

DiGress 129.7
DiGress + noise 126.5
DiGress + SymPE 30.3




Part 3: Tokenization



How do LLMs process data?

Data: comes in an ordered sequence, e.g. paragraphs of text. How do you
turn this into a learning task?

Autoregressive learning task: try to predict the next word, one at a time
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How do LLMs process data?

Data: comes in an ordered sequence, e.g. paragraphs of text. How do you
turn this into a learning task?

Autoregressive learning task: try to predict the next word, one at a time

The

"tokens”
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12.1 0.2 2.5 0.2
42.0 0.7 0.1 —1.9
0.8 0.6 0.2 0.4
2.3 3.2 10.9 7.4

Token embeddings

Learn a vector embedding for every word/token in a vocabulary (size
30-100k for natural language)
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Token embeddings

input: embeddings of all the tokens in the context window
Neural Net —
output: a distribution over all possible words



How do LLMs process data, concretely?

Hat: 54%
12.1 0.2 2.5
42.0 0.7 0.1 —19 o
0.8 0.6 0.2 m Chair: 19%
2.3 8.2 10.9 Window: 9%
Tok |
oken embeddings Vard: 18%

input: embeddings of all the tokens in the context window
Neural Net —
output: a distribution over all possible words



Tokenization looks a lot like compression...

Sequence of
discrete tokens

Input text » Encoder »

» Decoder »Input text

(integer IDs <
vocab_size)



Tokenization looks a lot like compression...

Byte pair encoding:

l Tokenize Count Pair | Merge Frequent | I
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To w</w>", lowes

o t </:./>" —

w—Most frequent: ‘o wi')

I ow </w>", low e s t ~
$/w>"
%Count aga o —

| I Tokenize l Count Pa r l Merge Frequent |

https://vizuara.substack.com/p/understanding-byte-pair-encoding
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Tokenization looks a lot like compression...

Byte pair encoding:

l Tokenize ' Count Pair l Merge Frequent |

lllowul' u,owestll E
To w</w>", lowes

t </:./>" —

w—Most frequent: ‘o wi')

I ow </w>", low e s t ~
</w>"
%Couﬂt aga S —

l I Tokenize l Count Pa r ' Merge Frequent |

https://vizuara.substack.com/p/understanding-byte-pair-encoding
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But tokenization ## compression alone

® \Want to generalize out of distribution (both in meaning and compressibility):
part of idea of subword tokenization

N\

E.g. unseen wora:

® || Ms don't train well on neurally compressed text (“Training LLMs over Neurally Compressec
Text"”, Lester et al 2024)

® Tokenizations that are equivalently good “compressors” train very ditterently

(e.g . numbe 'S, "Tokenization counts: the impact of tokenization on arithmetic in frontier LLMs"”, Singh & Strouse 2024)



How to apply these ideas to
tokenizing other types of data?



New, geometric data types

Small molecules and proteins 3D scans and objects



How do we convert a molecule into “worads”?

T

r;\c




How do we convert a molecule into “worads”?

T

0’2\0

\/

Must be able to recover the molecule (to high

accuracy) from the sequence of tokens



How do we convert a molecule into “worads”?

T

0/;\0

The words must come from a discrete
vocabulary, so that the LLM can learn a
separate embedding for each



How do we convert a molecule into “worads”?

T
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The words must be ordered to enable
the autoregressive LLM training paradigm
(next-token prediction)



How do we convert a molecule into “worads”?

T

V;\o

The words must be ordered to enable
the autoregressive LLM training paradigm
(next-token prediction)

Permutation canonicalization returns!



Molecule Tokenization Uses Equivariance

ESM3 uses geometric attention
to encode local structure token

VQ-VAE: quantize
/the encoder outputs

Encode

per residue; decode from all t
residues at once & e




Molecule Tokenization Uses Equivariance

Encoder is rotation invariant:

eUses ordering of amino acids to define

neighborhoods

e All-to-all "geometric attention” within

neighborhoods

eMeans: define local coordinate

frame using bac
to global frame
attention

kbone, then convert

oefore performing

yL

Encode

VQ-VAE: quantize
he encoder outputs



Open questions

® How to tokenize molecules — both proteins and others?
® \Want: generalizability outside training data, efficiency, learnability

® |nductive bias - invariance to (local) rotation, permutation (relevant tor
non-proteins)?

&% Byte Latent Transformer is recent, tokenization-free method: is it
effective for multi-modal and/or non-text data too?

® Note: still requires canonicalization!



Concluding thoughts

® |nductive bias isn't dead! But: emphasis on tlexibility + incorporation into
highly scalable methods

V- Even if the specific methods (tokenization, positional encodings,
canonicalization) are eventually replaced by learnable substitutes: guides
the search space

® Other directions not discussed: learnable symmetries, soft loss objectives

Thanks! Questions?



