

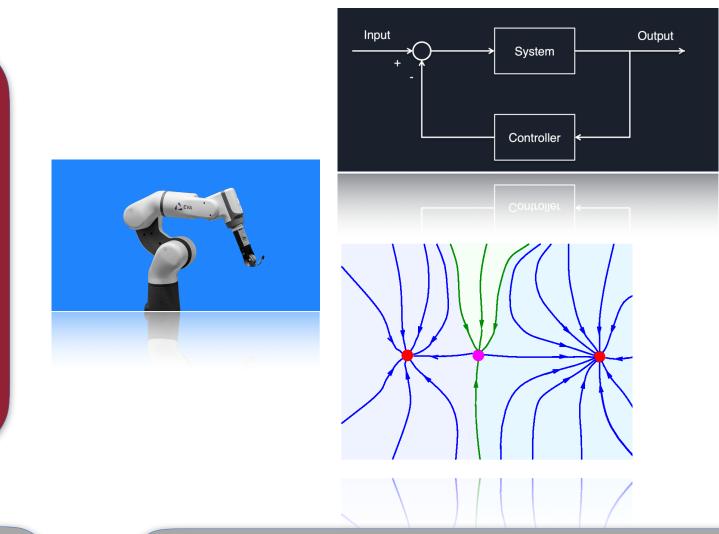
Learning Polynomial Problems with $SL(2,\mathbb{R})$ -Equivariance

Hannah Lawrence*, Mitchell Tong Harris*

Polynomial Problems

Applications: (problems solved via "sum of squares" [Parrilo])

- operations research
- control theory
- certifying dynamical system stability
- robot path planning
- designing nonlinear controllers



Certifying nonnegativity

M "represents" p p is nonnegative

where $x^{[d]} = \begin{pmatrix} 1 & x & x^2 \dots & x^d \end{pmatrix}^T$

 $\max_{M \in S^{2d}} \log \det M$

s.t. $x^{[d]^T} M x^{[d]} = p(x)$ and $M \ge 0$

Polynomial minimization

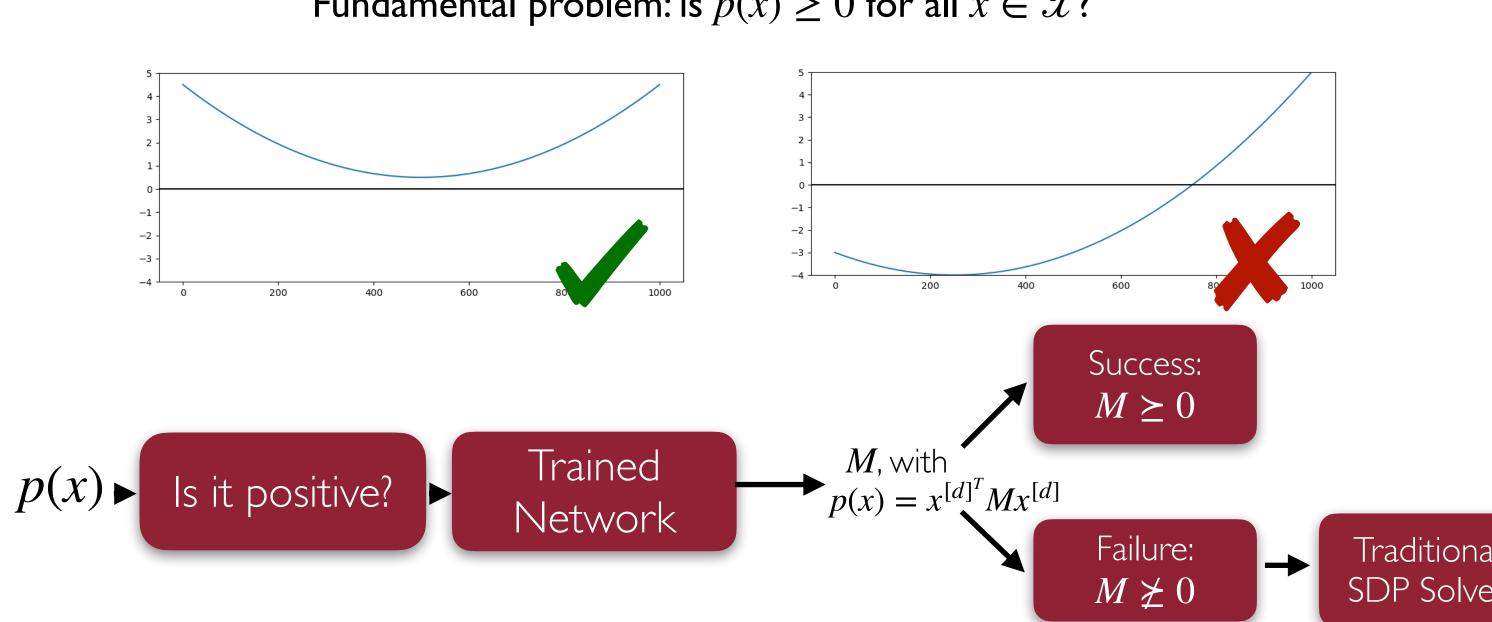
Two machine learning pipelines:

 $\alpha = \min p(x)$

ullet Predict minimum lpha

• Predict M to show $p - \alpha \ge 0$ Gives a "sum of squares" proof of lower bound if $M \geq 0$

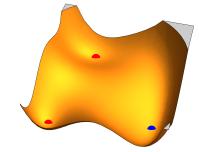
Fundamental problem: is $p(x) \ge 0$ for all $x \in \mathcal{X}$?



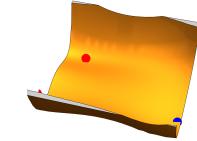
Symmetries

General Linear Group, GL(2) $A \in \mathbb{R}^{2 \times 2}$ s.t. $\det(A) \neq 0$

Special Linear Group, SL(2) $A \in \mathbb{R}^{2 \times 2}$ s.t. $\det(A) = 1$, i.e. coordinate changes that preserve area







If $g \in SL(2)$, define $g^{[d]}$ s.t. $(gx)^{[d]} = g^{[d]}x^{[d]}$.

M is the optimizer for p(x)

 $g^{[d]^T}Mg^{[d]}$ is the optimizer for p(gx).

Local and global minima of a polynomial after transformation by $A_1, A_{1.2}, A_{1.4}$ for

 $A_n = \begin{bmatrix} n & 0 \\ 0 & \frac{1}{n} \end{bmatrix} \in SL(2)$

The minimum value is **invariant** to a change of coordinates.

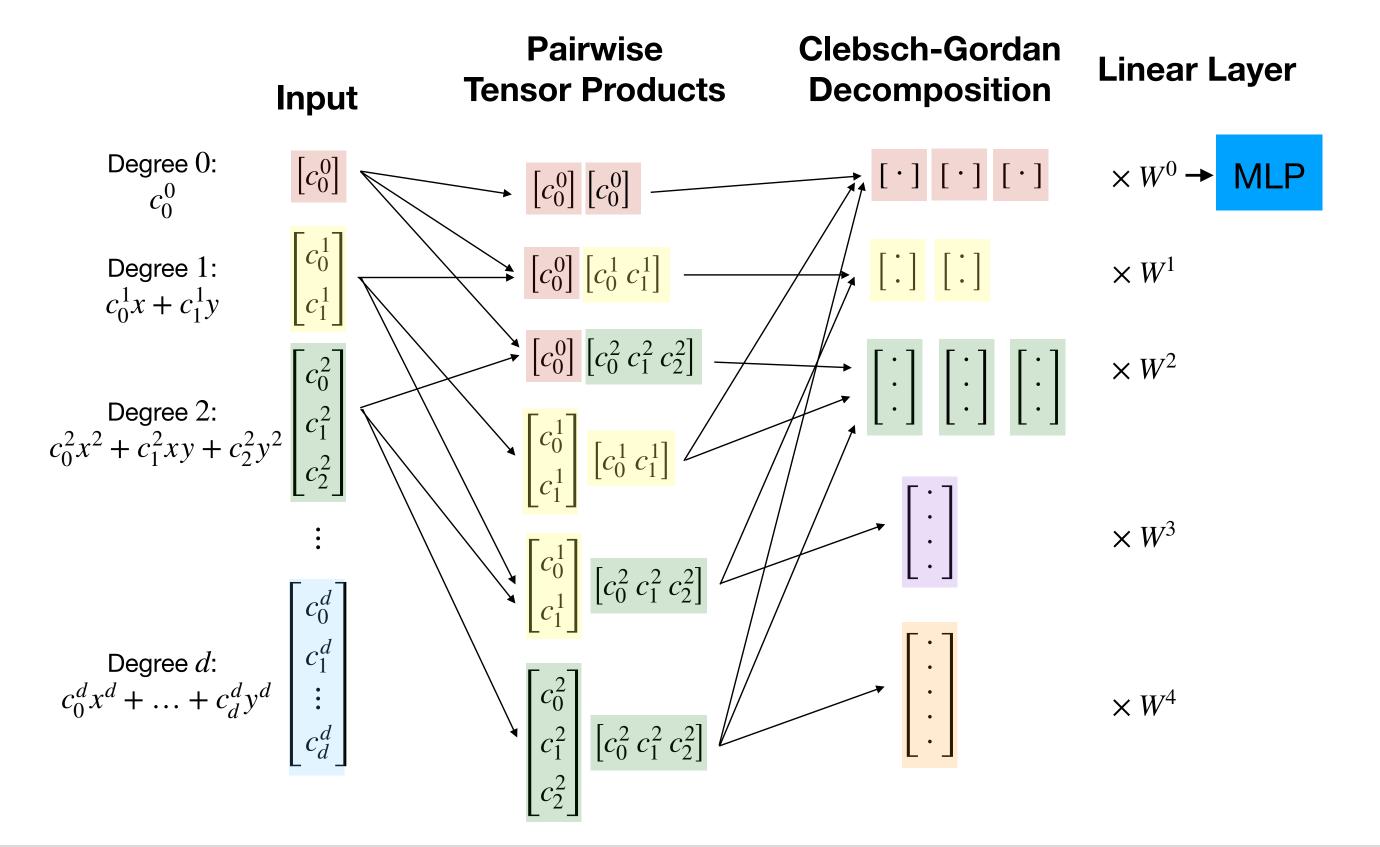
The maximizer is **equivariant** to a change of coordinates.

SL(2)-Equivariant Architecture

Key idea: decomposing tensor products into irreducible representations

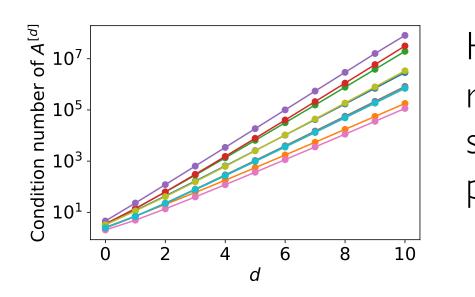
- V(d) = bivariate homogeneous polynomials (binary forms) of degree d = irreducible representations • For example: $V(2) = \{ax^2 + bxy + cy^2 : a, b, c \in \mathbb{R}\} = \{(a \ b \ c) : a, b, c \in \mathbb{R}\}$
- When $d_1 \ge d_2$, the Clebsch-Gordan decomposition,

 $V(d_1) \otimes V(d_2) = V(d_1 + d_2) \oplus V(d_1 + d_2 - 2) \cdots \oplus V(d_1 - d_2),$ can be computed explicitly by the classical transvectant from the invariant theory literature.



What's hard about non-compactness?

Representations of SL(2) can be arbitrarily poorly conditioned



Here, each line is a randomly chosen element of SL(2); d = degree of the representation (d=0 is original 2×2 matrix). Condition number = max singular value / min singular value; high condition number means matrix-vector products lose numerical accuracy.

 \rightarrow condition number grows exponentially in d

Non-compact equivariance = out-of-distribution robustness

There is no finite, invariant measure over SL(2), so not all points in the orbit of a non-zero datapoint can be equally likely:

$$\exists g, x : \ \mathbb{P}(x) \neq \mathbb{P}(gx)$$

In this example, the orbit of x is the entire x-axis, excluding the origin. There is no uniform measure on the whole x-axis, so some points in the orbit must be more likely than others.

- → Contrasts with most applications involving compact groups, such as rotations
- → Encouraging equivariance prioritizes datapoints that aren't necessarily as likely
- \rightarrow Moreover, standard loss functions are not SL(2)-invariant

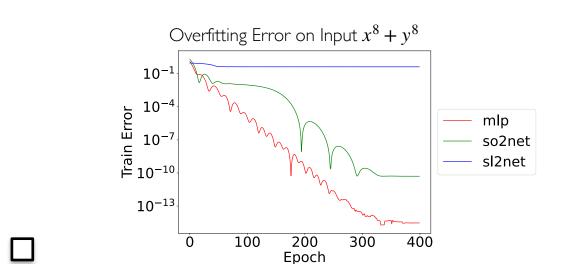
Impossibility Results

Theorem (Informal): There is a non-polynomial equivariant function that the SL(2)-equivariant architecture cannot approximate.

Proof. The problematic function is exactly the "certifying nonnegativity" function we wished to learn,

 $f(p) = \operatorname{argmax} \operatorname{logdet} Q$ s.t. $p(\vec{x}) = \vec{x}^{[d]^T} Q \vec{x}^{[d]}$ and $Q \ge 0$. We prove that the sparsity pattern of $f(x^8 + y^8)$ cannot be

matched by this architecture, for any learned parameters.



Corollary (Informal): There is an SL(2)-equivariant function that cannot be approximated by products of equivariant polynomials and arbitrary invariants.

Proof. The architecture can parametrize any equivariant polynomial multiplied by an arbitrary invariant [Bogatskiy et al], but this architecture cannot represent the stated equivariant function.

Implication: there is no general, equivariant version of the Weierstrass approximation theorem for $SL(2,\mathbb{R})$.

Experiments

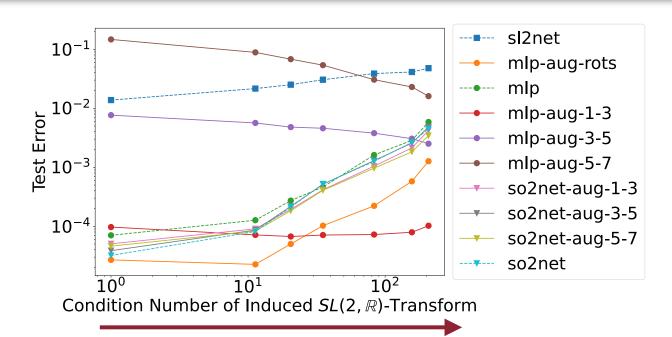
	•				
Degree	6	8	10	12	14
MLP NMSE	9.5e-6	6.0e-5	2.9e-5	2.3e-5	1.1e-5
MLP times (min)	0.062	0.082	0.17	0.22	0.29
SCS NMSE	2.7e-5	6.2e-5	1.2e-4	2.7e-4	1.2e-3
SCS times (min)	3.50	4.94	9.11	18.8	37.4

Methods:

- MLP with no augmentation, rotation-augmentation, or SL(2)-augmentation
- ullet SL(2)-augmentation distribution can vary by allowable condition number
- SO(2)-equivariant net with or without SL(2)-augmentation • SL(2)-equivariant net
- Solve for max-determinant certificate using Mosek, a second-order convex solver Consider test distribution shift by randomly

Dataset:

- On test instances drawn from the original distribution, MLP augmented by **rotations** is best
- MLP augmented by well-conditioned elements of SL(2) is best under distribution shift
- Augmentation by poorly-conditioned elements of SL(2) impedes performance



• Synthetically generated positive polynomials:

 $A_{ii} \sim N(0,1), p = \vec{x}^{[d]^I} (A^T A + 10^{-8} I) \vec{x}^{[d]}$

drawn SL(2) matrices of varying conditioning

increasing test dist. shift

Conclusions

- Machine learned methods can substantially accelerate positivity verification
- The standard toolkit of equivariant polynomial approximation (via tensor products of irreps) does not suffice for SL(2)

Future Work

- Methods for SL(2)-equivariance that avoid the roadblock of polynomial approximation, e.g. frames Scaling to higher-degree polynomials
- Deployment on non-synthetic applications-driven data

References

- Parrilo, Pablo A. Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. California Institute of Technology, 2000.
- Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." International Conference on Machine Learning. PMLR, 2020.