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SL(2)-Equivariant Architecture lmpossibility Results
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SCS NMSE 2.7e-5 6.2e-5 1.2e-4 27e-4 1.2e-3
x SCS times (min) | 3.50 4.94 9.11 18.8 374

S . C ) Theorem (Informal): There is a non-polynomial equivariant function that the
Applications: (problems solved via o7 (0 A " |
“sum of Isquares” [Parrilo]) * V(d) = bivariate homogeneous polynomials (binary forms) of degree d = irreducible representations ( )—equwamant arcnitecture cannot approximate.
* operations research -— « For example: V(2) = {ax* + bxy+ ¢y’ :a,b,c €RY={(a b ¢):a,b,c €R)
: conﬁrql theory . . o) *When d; > d,, the Clebsch-Gordan decomposition, Proof. The problematic function is exactly the “certifying non- e T ot
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* robot path planning can be computed explicitly by the classical transvectant from the invariant theory literature. £(p) = argmaxlogdet Q st. p(F) = ?c[d]TQ)_c)[d] and O > 0. 5 10 T mnet
* designing nonlinear controllers o = . q ~ E107 — =
Pairwise Clebsch-Gordan . . Layer We prove that the sparsity pattern of f(x° + y°) cannot be 1075
Input Tensor Products Decomposition matched by this architecture, for any learned parameters. [ T g
Degree 0: [C(())] SO T R—— S B (D B XWO—’- : : 2 : : :
C ) C ) 0 Y 0] <] / Corollary (Informal): There is an SL(2)-equivariant function that cannot be
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= R Ix | o Mes* 2 x W2 Proof. The architecture can parametrize any equivariant polynomial multiplied by an arbitrary invariant
WO machine learning pipelines: <t ol pppld) — p(x) and M >0 Degree 2: . [Bogatskiy et al], but this architecture cannot represent the stated equivariant function. O
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What's hard about non-compactness? o Dataset
Success: * MLP with no augmentation, rotation-augmentation, or SL(2) * Synthetically generated positive polynomials:
/ M >0 ( ) -augmentation Al.j ~ N(O,1),p = "[d]T(ATA + 10—81))-5[d]
| - Trained M, with T . SL(2I)Taugmentation distribution can vary by allowable « Solve for max-determinant certificate using
P(X) g Is it positive! |g Network p(x) = x4 prxldl condmorj nqmber | | | Mosek, a second-order convex solver
\ Failure: B Traditional . Here, each line is a randomly chosen element of SL(2); d = degree of the : gg(zz)'equa'f'ans ne;c with or without SL(2)-augmentation e Consider test distr?bution shiﬁ oY rand.o.mly
M %0 SDP Solver ~:| representation (d = 0 is original 2 X 2 matrix). Condition number = max (2)-equivariant ne ek S EiTIEES O eI emeemis

singular value / min singular value; high condrtion number means matrix-vector
products lose numerical accuracy.
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K A € R?? st det(A) = 1 ,i.e. coordinate changes that preserve area J There is no finite, invariant /Example: t \
n 0 P |
measure over SL(2), so not X = [(1)] A = g || esLe) I Conclusions
all points In the orbit of a L T 1T o * Machine learned methods can substantially accelerate positivity verification
f ¢ € SL(2), define g[d] st (gx)[d] — g[d]x[d]. non-zero datapoint can be * The standard toolkit of equivariant polynomial approximation (via tensor products of irreps) does
I likel P In this example, the orbit of x Is the entire x-axis, excluding the not suffice for SL(2)
= equally lIkely. origin. There I1s no uniform measure on the whole x-axis, so some
Local anq global minima of d M is the optimizer for p(x) Jo. x : ]:[)(x) # ﬂj)( X) Kpomts in the orbrt must be more likely than others. / F Utu rC WO rk
polynomial after transtormation by — ErX - g * Methods for SL(2)-equivariance that avoid the roadblock of polynomial approximation, e.g. frames
A, A, Apyfor ) g[d]TMg[d] s the optimizer for p(gx). * Scaling to higher-degree polynomials |
n 0O * Deployment on non-synthetic applications-driven data
A = 1| € SL(2) . C . . .
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