
• At the end of each trial, the correct category was revealed and the 
subjects recorded the accuracy of their category guess. 
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Impossibility Results

MLP is faster than 
a convex solver!
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MLP

Non-compact equivariance = out-of-distribution robustness

There is no finite, invariant 
measure over , so not 
all points in the orbit of a 
non-zero datapoint can be 
equally likely: 

 

SL(2)

∃g, x : ℙ(x) ≠ ℙ(gx)

Implication: there is no general, equivariant version of the Weierstrass 
approximation theorem for .SL(2,ℝ)

Example:

, x = [1
0] An = [

n 0
0 1

n ] ∈ SL(2)

In this example, the orbit of  is the entire -axis, excluding the 
origin. There is no uniform measure on the whole x-axis, so some 
points in the orbit must be more likely than others.

x x

x A2x

Representations of  can be arbitrarily poorly conditionedSL(2)

Here, each line is a randomly chosen element of ;  = degree of the 
representation (  is original  matrix). Condition number = max 
singular value / min singular value; high condition number means matrix-vector 
products lose numerical accuracy.

SL(2) d
d = 0 2 × 2

 condition number grows exponentially in → d

Fundamental problem: is  for all ?p(x) ≥ 0 x ∈ 𝒳

α = min
x

p(x) max
M∈S2d

log det M

s.t.     and    x[d]TMx[d] = p(x) M ⪰ 0Two machine learning pipelines:
•Predict minimum 
•Predict  to show 
Gives a “sum of squares” proof of 
lower bound if 

α
M p − α ≥ 0

M ⪰ 0
where x[d] = (1 x x2⋯ xd)T
 “represents" M p  is nonnegativep

Polynomial Problems

 Encouraging equivariance prioritizes datapoints that aren’t necessarily as likely→
 Contrasts with most applications involving compact groups, such as rotations →

 Moreover, standard loss functions are not -invariant→ SL(2)

Applications: (problems solved via 
“sum of squares” [Parrilo])
• operations research
• control theory
• certifying dynamical system stability
• robot path planning
• designing nonlinear controllers 

Local and global minima of a 
polynomial after transformation by 

 for 

                

A1, A1.2, A1.4

An = [
n 0
0 1

n ] ∈ SL(2)

 is the optimizer for 
 

 is the optimizer for .

M p(x)
⟹

g[d]TMg[d] p(gx)

If , define  s.t. . g ∈ SL(2) g[d] (gx)[d] = g[d]x[d]

The maximizer is equivariant to a 
change of coordinates.

The minimum value is invariant to a 
change of coordinates.

General Linear Group, GL(2)
 s.t.  A ∈ ℝ2×2 det(A) ≠ 0

Special Linear Group, SL(2)
 s.t.  , i.e. coordinate changes that preserve areaA ∈ ℝ2×2 det(A) = 1

increasing test dist. shift

• On test instances drawn from the original distribution, 
MLP augmented by rotations is best

• MLP augmented by well-conditioned elements of 
 is best under distribution shift

• Augmentation by poorly-conditioned elements of 
 impedes performance

SL(2)

SL(2)

• bivariate homogeneous polynomials (binary forms) of degree   irreducible representations 
•For example: 

•When , the Clebsch-Gordan decomposition,

   can be computed explicitly by the classical transvectant from the invariant theory literature.

V(d) = d =
V(2) = {ax2 + bxy + cy2 : a, b, c ∈ ℝ} = {(a b c) : a, b, c ∈ ℝ}

d1 ≥ d2
V(d1) ⊗ V(d2) = V(d1 + d2) ⊕ V(d1 + d2 − 2)⋯ ⊕ V(d1 − d2),

Methods: 
• MLP with no augmentation, rotation-augmentation, or 

-augmentation
• -augmentation distribution can vary by allowable 

condition number
• -equivariant net with or without -augmentation
• -equivariant net

SL(2)

SL(2)

SO(2) SL(2)
SL(2)

Dataset: 
• Synthetically generated positive polynomials:

 
• Solve for max-determinant certificate using 

Mosek, a second-order convex solver
• Consider test distribution shift by randomly 

drawn  matrices of varying conditioning

Aij ∼ N(0,1), p = ⃗x[d]T(AT A + 10−8I) ⃗x[d]

SL(2)

p(x) Is it positive? Trained 
Network

Success:
M ⪰ 0

Failure:
M ⪰̸ 0

Traditional 
SDP Solver

References

Proof.  The architecture can parametrize any equivariant polynomial multiplied by an arbitrary invariant 
[Bogatskiy et al], but this architecture cannot represent the stated equivariant function.

Corollary (Informal):  There is an -equivariant function that cannot be 
approximated by products of equivariant polynomials and arbitrary invariants.

SL(2)

•Machine learned methods can substantially accelerate positivity verification
•The standard toolkit of equivariant polynomial approximation (via tensor products of irreps) does 
not suffice for SL(2)

Future Work
•Methods for -equivariance that avoid the roadblock of polynomial approximation, e.g. frames
•Scaling to higher-degree polynomials
•Deployment on non-synthetic applications-driven data

SL(2)

Key idea: decomposing tensor products into irreducible representations

Polynomial minimization Certifying nonnegativity

, withM
p(x) = x[d]T Mx[d]

Proof.  The problematic function is exactly the “certifying non-
negativity” function we wished to learn,

Theorem (Informal):  There is a non-polynomial equivariant function that the 
-equivariant architecture cannot approximate.SL(2)

Overfitting Error on Input x8 + y8

.f(p) = argmax logdet Q s.t. p( ⃗x) = ⃗x[d]TQ ⃗x[d] and Q ⪰ 0
We prove that the sparsity pattern of  cannot be 
matched by this architecture, for any learned parameters.

f(x8 + y8)

* equal contr ibution


