
Learning Polynomial Problems with 
-EquivarianceSL(2,ℝ)

Hannah Lawrence*               Mitchell Harris*
MIT MIT



Polynomial Positivity is Useful
Fundamental problem: is  for all ?
p( ⃗x) ≥ 0 x ∈ 𝒳

If so, how do you prove it?

Applications: robot path planning, dynamical system stability, designing nonlinear controllers 



Positivity Verification is Useful
Fundamental problem: is  for all , provably?


Def. The d-lift 


Def. A matrix  represents  if 





If  represents  and , then  for all  by definition

p(x, y) ≥ 0 x, y

⃗x[d] = [yd xyd−1 ⋯ xd]T

M p(x, y) p( ⃗x) = p(x, y) = ⃗x[d]TM ⃗x[d]

[yd xyd−1 ⋯ xd]
M00 M01 ⋯
M10 M11 ⋯
⋮

Md0 Md1 ⋯

yd

xyd−1

⋮
xd

Q p(x, y) Q ⪰ 0 p(x, y) ≥ 0 x, y

In fact, this is a way 
of writing  as a 

sum of squares, 
p( ⃗x)

p( ⃗x) = ∑
i

qi( ⃗x)2



Positivity Verification is Useful
Fundamental problem: is  for all , provably?


Def. The d-lift 


Def. A matrix  represents  if 





If  represents  and , then  for all  by definition

p(x, y) ≥ 0 x, y

⃗x[d] = [yd xyd−1 ⋯ xd]T

M p(x, y) p( ⃗x) = p(x, y) = ⃗x[d]TM ⃗x[d]

[yd xyd−1 ⋯ xd]
M00 M01 ⋯
M10 M11 ⋯
⋮

Md0 Md1 ⋯

yd

xyd−1

⋮
xd

Q p(x, y) Q ⪰ 0 p(x, y) ≥ 0 x, y

constraint on 
antidiagonal 
sums of M



Max-Determinant via SDPs
For a given positive , many  can represent it!


Convenient choice:





Why? 

 analytic center of the feasible region (avoiding boundary)


 has a unique solution if  is positive

p M

f(p) = argmax log det Q such that p( ⃗x) = ⃗x[d]TQ ⃗x[d] and Q ⪰ 0

→

→ p

Solve via convex optimization



For a given positive , many  can represent it!


Convenient choice:





Why? 

 analytic center of the feasible region (avoiding boundary)


 has a unique solution if  is positive

p M

f(p) = argmax log det Q such that p( ⃗x) = ⃗x[d]TQ ⃗x[d] and Q ⪰ 0

→

→ p

They are slow + scale poorly with degree!

What’s wrong with SDPs?



For a given positive , many  can represent it!


Convenient choice:





Why? 

 analytic center of the feasible region (avoiding boundary)


 has a unique solution if  is positive

p M

f(p) = argmax log det Q such that p( ⃗x) = ⃗x[d]TQ ⃗x[d] and Q ⪰ 0

→

→ p

What’s wrong with SDPs?

Possible acceleration: machine learning!



Machine Learning for SDPs
1. Generate many random problem instances, and solve them with a 

classical solver


2. Use these solved instances as training data for a neural network



Why could ML help?
Might seem like a lot to hope for: positivity verification is NP hard!


• Can be reduced to problems in combinatorial optimization 


However, can still hope for solving only on a specific data distribution!


• For example, pure square polynomials  are easier


• We don’t explicitly specify the form of such a distribution, but use it as 
high-level intuition

p(x) = q(x)2



Why could ML help?
Track record of ML accelerating slow computation: 

• Accelerating density functional theory calculations for understanding 
dynamics of possible catalysts, for example

Open Catalyst Project

Also: can verify a proposed catalyst with regular DFT

Train on expensive 
computations

Then use trained model 
instead of expensive 
computations on new 

data!



Why could ML help?
Track record of ML accelerating slow computation: 

• Accelerating positivity verification for e.g. robot path planning, 
dynamical system stability, etc.

Train on expensive 
computations from 

convex solvers

Then use trained model 
instead of expensive 
computations on new 

data!



Why could ML help?

p( ⃗x)



Why could ML help?

p( ⃗x) Is it positive?



Why could ML help?

p( ⃗x) Is it positive? Trained Network



Why could ML help?

p( ⃗x) Is it positive? Trained Network
M,  with

p( ⃗x) = ⃗x[d]TM ⃗x[d]



Why could ML help?

p( ⃗x) Is it positive? Trained Network

Success: 
M ⪰ 0

M,  with
p( ⃗x) = ⃗x[d]TM ⃗x[d]



Why could ML help?

p( ⃗x) Is it positive? Trained Network

Success: 
M ⪰ 0

Failure: 
M ⪰̸ 0

M,  with
p( ⃗x) = ⃗x[d]TM ⃗x[d]



Why could ML help?

p( ⃗x) Is it positive? Trained Network

Success: 
M ⪰ 0

Failure: 
M ⪰̸ 0

Traditional SDP 
Solver

M,  with
p( ⃗x) = ⃗x[d]TM ⃗x[d]

Can check your machine-learned answer!



What kind of ML should we try?



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input

p( ⃗x)



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input Output

p( ⃗x)
 of maximal  withQ log det Q
p( ⃗x) = ⃗x[d]TQ ⃗x[d], Q ⪰ 0

⃗x = (x, y)



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input Output

p( ⃗x)
 of maximal  withQ log det Q
p( ⃗x) = ⃗x[d]TQ ⃗x[d], Q ⪰ 0

p(A ⃗x)
A ∈ ℝ2×2

⃗x = (x, y)



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input Output

p( ⃗x)
 of maximal  withQ log det Q
p( ⃗x) = ⃗x[d]TQ ⃗x[d], Q ⪰ 0

p(A ⃗x)
 then of maximal A[d]TQA[d] log det

p(A ⃗x) = ⃗x[d]T A[d]TQA[d] ⃗x[d],
A[d]TQA[d] ⪰ 0A ∈ ℝ2×2

⃗x = (x, y)



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input Output

p( ⃗x)
 of maximal  withQ log det Q
p( ⃗x) = ⃗x[d]TQ ⃗x[d], Q ⪰ 0

p(A ⃗x)
 then of maximal A[d]TQA[d] log det

p(A ⃗x) = ⃗x[d]T A[d]TQA[d] ⃗x[d],
A[d]TQA[d] ⪰ 0

Here,  is 
defined by 

A[d]

(A ⃗x)[d] = A[d] ⃗x[d]

A ∈ ℝ2×2

⃗x = (x, y)



What kind of ML should we try?
Observe: the problem exhibits symmetry

Input Output

p( ⃗x)  solving a particular optimization problemQ

p(A ⃗x) Some linear transformation of Q
A ∈ ℝ2×2

⃗x = (x, y)

Change of 
variables in 
polynomial



Special Linear Group: SL(2,ℝ)
 consists of area-preserving linear 

transformations


Example: acts on bivariate polynomials as 

SL(2,ℝ) = {A ∈ ℝ2×2 : det(A) = 1}

p ([x
y]) ↦ p (A [x

y])



Special Linear Group: SL(2,ℝ)
 consists of area-preserving linear 

transformations


Example: acts on bivariate polynomials as 

SL(2,ℝ) = {A ∈ ℝ2×2 : det(A) = 1}

p ([x
y]) ↦ p (A [x

y])



Special Linear Group: SL(2,ℝ)
 consists of area-preserving linear 

transformations


Example: acts on bivariate polynomials as 

SL(2,ℝ) = {A ∈ ℝ2×2 : det(A) = 1}

p ([x
y]) ↦ p (A [x

y])
Local minima

Global minimum



Special Linear Group: SL(2,ℝ)
 consists of area-preserving linear 

transformations


Example: acts on bivariate polynomials as 

SL(2,ℝ) = {A ∈ ℝ2×2 : det(A) = 1}

p ([x
y]) ↦ p (A [x

y])
Local minima

Global minimum

How do we take into account this structure?



Primer on Equivariant Learning



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

x



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

x f(x)



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

x f(x)

ρ1(g)x



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

x f(x)

ρ1(g)x ρ2(g)f(x)



Equivariant 
Network

Energy e

Forces f Relaxed structure

Consider predicting from an input molecular system

Primer on Equivariant Learning



Equivariant 
Network

Energy e

Forces f Relaxed structure

Rotate input

Primer on Equivariant Learning

Consider predicting from an input molecular system



Equivariant 
Network

Energy e

Forces f Relaxed structure

Rotate input

invariant

equivariant equivariant

Primer on Equivariant Learning

Consider predicting from an input molecular system



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

x f(x)

ρ1(g)x ρ2(g)f(x)



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A function  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
f : 𝒳 → 𝒴

f(ρ1(g)x) = ρ2(g)f(x) ∀x ∈ 𝒳, ∀g ∈ G

p( ⃗x)

p(A ⃗x)

Q

A[d]TQA[d]



Primer on Equivariant Learning
Let  be a group, and let  and  be 
group representations. A network  is equivariant if 





G ρ1 : G → GL(𝒳) ρ2 : G → GL(𝒴)
N : 𝒳 → 𝒴

N(ρ1(g)x) = ρ2(g)N(x) ∀x ∈ 𝒳, ∀g ∈ G

p( ⃗x)

p(A ⃗x)

Q

A[d]TQA[d]Network

Network



Equivariant Learning: Approaches
Compact groups: 

• Generalize convolutional networks to groups beyond translations


• Nonlinearities: pointwise vs tensor product


Non-compact groups: 

• Approximate equivariance via Monte-Carlo approximation of integrals


• Exact equivariance via tensor products and Clebsch-Gordan transform




Practical Difficulties of SL(2,ℝ)
1. The induced representations can be arbitrarily poorly conditioned

Here, each line is a randomly chosen element of 
;  = degree of the induced representation 

(  is original  matrix) 

SL(2) d

d = 0 2 × 2



Practical Difficulties of SL(2,ℝ)
2. There is no finite, invariant measure over , so all points in the orbit of 
a supported datapoint cannot be equally likely 

SL(2)

Example:


, 
x = [1
0] An = [

n 0
0 1

n ] ∈ SL(2)

In this example, the orbit of  is the entire -axis, excluding the origin. 
x x

x A2x

 Think of equivariant learning as out-of-distribution robustness→



Irreducible Reps of SL(2,ℝ)
Def. A group representation is a vector space  together with a map 

 satisfying 


Def. An irreducible representation is a representation for which there does not 
exist an invariant subspace  satisfying  for all 


The irreps are fundamental tools for understanding a group’s other representations: 
for most groups of interest, can decompose a group representation into irreps:


Representation  = 

V
ρ : G → GL(V) ρ(g1)ρ(g2) = ρ(g1g2) ∀g1, g2 ∈ G

W ⊆ V ρ(g)w ∈ W g ∈ G, w ∈ W

ρ(g) U
Irrep ρ1(g)

⋱
Irrep ρk(g)

U−1



For each integer , the -dimensional vector space of degree  binary 
forms ( ), is an irreducible representation of . 


Example: , 


Throughout, we assume a monomial basis for  (i.e. ) and 
represent elements of  as vectors of coefficients in . 


Example:  written as 


What is , i.e. how does  act on polynomials?


d > 0 (d + 1) d
V(d) SL(2,ℝ)

d = 3 10x2y − 3y3 ∈ V(3)

V(d) xd, xd−1y, …, yd

V(d) ℝd+1

10x2y − 3y3 [0 10 0 −3]

ρ g ∈ SL(2,ℝ)

ρ(g)p( ⃗x) = p(g ⃗x)

Finite-dim. Irreps of SL(2,ℝ)

Inputs are 
already in irrep 

spaces!



Linear, Learnable Layers?



Schur’s Lemma  Linear Layers→
Essentially: describes all linear, equivariant mappings between irrep spaces


Must send an element of an irrep space to either 0, or back to a copy of the 
same space!

Nonzero

NonzeroV(d1)

V(d2)

V(d1) V(d2)

How about a nonlinear layer?



Clebsch-Gordan: the transvectant
The tensor product of irreps is a representation, and therefore itself decomposes 
into irreps. (tensor product with self is not linear!)


For , the exact decomposition is: 





The linear, invertible, equivariant map establishing this isomorphism

 is known as the transvectant

SL(2,ℝ)

V(d1) ⊗ V(d2) ≃
min(d1,d2)

⨁
n=0

V(d1 + d2 − 2n)

T : V(d1) ⊗ V(d2) →
min(d1,d2)

⨁
n=0

V(d1 + d2 − 2n)



Clebsch-Gordan: the transvectant

 is the transvectant 

Let  and . The  component 
of  is given by 

T : V(d1) ⊗ V(d2) →
min(d1,d2)

⨁
n=0

V(d1 + d2 − 2n)

p(x1, y1) ∈ V(d1) q(x2, y2) ∈ V(d2) d1 + d2 − 2n
T(p ⊗ q)

ψn(p, q) := ( ∂2

∂x1∂y2
−

∂2

∂x2∂y1 )
n

p ⋅ q
x = x1 = x2
y = y1 = y2

∝
n

∑
m=0

(−1)m( n
m) ∂np

∂xn−m∂ym

∂nq
∂xmyn−m



Clebsch-Gordan: the transvectant

 is the transvectant 

Let  and . The  component 
of  is given by 

T : V(d1) ⊗ V(d2) →
min(d1,d2)

⨁
n=0

V(d1 + d2 − 2n)

p(x1, y1) ∈ V(d1) q(x2, y2) ∈ V(d2) d1 + d2 − 2n
T(p ⊗ q)

ψn(p, q) := ( ∂2

∂x1∂y2
−

∂2

∂x2∂y1 )
n

p ⋅ q
x = x1 = x2
y = y1 = y2

∝
n

∑
m=0

(−1)m( n
m) ∂np

∂xn−m∂ym

∂nq
∂xmyn−m

Input: two 
homogeneous 
polynomials Output: another homogeneous polynomial



-Equivariant ArchitectureSL(2,ℝ)
Input

cd
0

cd
1
⋮
cd

d

[c0
0]

[c1
0

c1
1]

c2
0

c2
1

c2
2

⋮

Degree : 
0
c0

0

Degree : 
1
c1

0x + c1
1y

Degree :

 

2
c2

0 x2 + c2
1 xy + c2

2 y2

Degree :

 

d
cd

0 xd + … + cd
d yd

Pairwise  
Tensor Products

Clebsch-Gordan  
Decomposition Linear Layer

use colors for diff irrep spaces? also match notation w/writeup
also make usual/boring NN diagram

separate diagram/explanation for last layer?

[c0
0] [c0

0]

c2
0

c2
1

c2
2

[c2
0 c2

1 c2
2]

[c1
0

c1
1] [c2

0 c2
1 c2

2]

[c0
0] [c2

0 c2
1 c2

2]

[c1
0

c1
1] [c1

0 c1
1]

[c0
0] [c1

0 c1
1]

[ ⋅ ] [ ⋅ ] [ ⋅ ]

[ ⋅
⋅ ] [ ⋅

⋅ ]

[ ⋅
⋅
⋅ ] [ ⋅

⋅
⋅ ] [ ⋅

⋅
⋅ ]

[
⋅
⋅
⋅
⋅ ]
⋅
⋅
⋅
⋅
⋅

× W0

× W1

× W2

× W3

× W4

MLP



Final Layer Enforces p( ⃗x) = ⃗x[d]TQ ⃗x[d]

How to (1) go from irrep vector spaces, to the vector space of matrices? and 
(2) ensure that the output matrix represents the input polynomial?


A collection of 
homogeneous 
polynomials

Linear equivariant 
map L Output matrix Q



Final Layer Enforces p( ⃗x) = ⃗x[d]TQ ⃗x[d]

How to (1) go from irrep vector spaces, to the vector space of matrices? and 
(2) ensure that the output matrix represents the input polynomial?


A collection of 
homogeneous 
polynomials

Linear equivariant 
map L Output matrix Q

High-level: restrict 
mapping s.t. 

 p( ⃗x) = ⃗x[d]TQ ⃗x[d]



Final Layer Enforces p( ⃗x) = ⃗x[d]TQ ⃗x[d]

How to (1) go from irrep vector spaces, to the vector space of matrices? and 
(2) ensure that the output matrix represents the input polynomial?


A collection of 
homogeneous 
polynomials

Linear equivariant 
map L Output matrix Q

where degree  
one is the 

original 

d

p( ⃗x)

Our choice of   
enforces that 

this works

L

Note: the PSD property is what must be learned!



How expressive is this architecture?
Universality is a standard sanity check for neural architectures:


Can this architecture approximate any continuous (equivariant) function, if given 
enough parameters (e.g. sufficiently large width or channels)?


The answer is typically yes, and proceeds via a polynomial approximation 
argument. 

i.e., show that the network can approximate any (equivariant) polynomial to 
arbitrary precision, and then appeal to Stone-Weierstrass Theorem


Early work on universal equivariant architecture by Yarotsky 2018; proven for 
Clebsch-Gordan nets and similar architectures by Bogatskiy et al 2020



How expressive is this architecture?
Universality is a standard sanity check for neural architectures:


Can this architecture approximate any continuous (equivariant) function, if given 
enough parameters (e.g. sufficiently large width or channels)?


The answer is typically yes, and proceeds via a polynomial approximation 
argument. 

i.e., show that the network can approximate any (equivariant) polynomial to 
arbitrary precision, and then appeal to Stone-Weierstrass Theorem


Early work on universal equivariant architecture by Yarotsky 2018; proven for 
Clebsch-Gordan nets and similar architectures by Bogatskiy et al 2020



How expressive is this architecture?
Universality is a standard sanity check for neural architectures:


Can this architecture approximate any continuous (equivariant) function, if given 
enough parameters (e.g. sufficiently large width or channels)?


The answer is typically yes, and proceeds via a polynomial approximation 
argument. 

i.e., show that the network can approximate any (equivariant) polynomial to 
arbitrary precision, and then appeal to Stone-Weierstrass Theorem


Early work on universal equivariant architecture by Yarotsky 2018; proven for 
Clebsch-Gordan nets and similar architectures by Bogatskiy et al 2020



How expressive is this architecture?
Universality is a standard sanity check for neural architectures:


Can this architecture approximate any continuous (equivariant) function, if given 
enough parameters (e.g. sufficiently large width or channels)?


The answer is typically yes, and proceeds via a polynomial approximation 
argument. 

i.e., show that the network can approximate any (equivariant) polynomial to 
arbitrary precision, and then appeal to Stone-Weierstrass Theorem


Early work on universal equivariant architecture by Yarotsky 2018; proven for 
Clebsch-Gordan nets and similar architectures by Bogatskiy et al 2020



Surprise: it is not universal
This is a sharp contrast to previous, very analogous work!



Counterexample: max-det function
Theorem. Let  denote the network output with (learned) parameters 

 applied to the input . Let  be the continuous, -equivariant 
function





There exists an input polynomial , and an absolute constant  such 
that for any , . Therefore, the architecture is not 
universal.


𝒩W(p)
W p f SL(2,ℝ)

f(p) = argmax log det Q such that p( ⃗x) = ⃗x[d]TQ ⃗x[d] and Q ⪰ 0

p ϵ > 0
W | f(p) − 𝒩W(p) | > ϵ



Proof outline of counterexample
Def. Call the monomial  balanced mod  if . The 
polynomial  is balanced mod  if it is the weighted sum of monomials that 
are all balanced mod .


Lemma. If  and  are balanced mod , then   is balanced mod . 
Similarly, the linear layer and MLP on invariants preserve balancedness.


Example:  and  balanced mod 8, because  and 
. However,  is not: .

xkyr b k ≡ r (mod b)
p b

b

f g b ∀n ψn( f, g) b

x2y2 x8 2 ≡ 2 (mod 8)
8 ≡ 0 (mod 8) x3y 3 ≢ 1 (mod 8)



Proof outline of counterexample
Proof of theorem. Let . Since  is balanced mod 8, so too is the final 
network output. In particular, the degree  component can only contain the monomial 

. In total, the last layer of the network (for the max-log-det problem) takes as input 
the monomials and 1, all of which map to a matrix of sparsity pattern    

 

However, the computed matrix  does not match this sparsity pattern.

p(x, y) = x8 + y8 p
4

x2y2

x8, y8, x4y4, x2y2,

× 0 0 0 ×
0 0 0 × 0
0 0 × 0 0
0 × 0 0 0
× 0 0 0 ×

f(x8 + y8)



Not approximable by any polynomial!
Is this just a problem with our choice of architecture? 

• Using the same techniques as Bogatskiy et al, one can show that our network can 
approximate any equivariant polynomial


Is it a contrived or unnatural function?


• Nope, it’s the exact function we want to approximate!


Therefore, the max log det function  cannot be approximated by equivariant 
polynomials


• This suggests that any hope of getting around the issue must use a fundamentally 
different paradigm and proof of universality than prior work

f



Intuitively, what has gone wrong?
Plenty of analogous architectures, even for non-compact groups, are universal. What’s different?


• The hard function  is only defined on positive polynomials, not on all inputs


• We work with real values, i.e.  instead of 


• Previous work relies on integration over a maximal compact subgroup, the special 
orthogonal group. In the complex case,  and  invariants are equivalent.


• But not so in the real-valued case! E.g.  is an invariant of the polynomial 
 under an  action, but is not an invariant under an  

action.


Was this all a waste — should we throw out our knowledge of ?


No!

f

SL(2,ℝ) SL(2,ℂ)

SO(2,ℂ) SL(2,ℂ)

a + c
ax2 + bxy + cy2 SO(2,ℝ) SL(2,ℝ)

SL(2,ℝ)



Alternative: Data Augmentation
For each training point , apply a random  
transformation:


 where 


Doesn’t enforce equivariance strictly, but:


• Standard method for encouraging out-of-distribution robustness


• Easy to combine with any architecture

(p( ⃗x), f(p( ⃗x))) SL(2,ℝ)

(p( ⃗x), f(p( ⃗x))) ↦ (p(A[d] ⃗x), A[d]Tf(p( ⃗x))A[d]) A ∼ μ(SL(2,ℝ))



Alternative: Data Augmentation
For each training point , apply a random  
transformation:


 where 


What distribution  to choose? 


Restrict the condition number of A!

(p( ⃗x), f(p( ⃗x))) SL(2,ℝ)

(p( ⃗x), f(p( ⃗x))) ↦ (p(A[d] ⃗x), A[d]Tf(p( ⃗x))A[d]) A ∼ μ(SL(2,ℝ))

μ



Experiments: Methods



Experiments: Synthetic Data
Data generation: only positive polynomials


Sample  via 


Set , which is positive  


Labels: computed using the Mosek optimizer


U ∈ ℝd+1×d+1 Uij ∼iid N(0,1)

p( ⃗x) = ⃗x[d]T(UTU + 10−8I) ⃗x[d]



Experiment Results

MLP with data augmentation by well-conditioned elements of  is best!SL(2,ℝ)

increasing test dist. shift



MLP is faster than a convex solver!

SCS: a first order solver (O’Donoghue et al 2016)


NMSE: normalized mean squared error, with respect to the ground truth labels 
computed by the second order solver, Mosek (ApS, 2022) 


 These times are estimates for 5,000 test examples on a single CPU  

 The trained MLP has a much faster forward pass than a solver, at same error!→



Conclusions
• Machine learning is a promising avenue for accelerating polynomial 

problems


• Even a simple architecture can harness patterns in a dataset not used 
by traditional convex solvers


• Non-compact group equivariance can be very subtle, despite analogies to 
compact groups! 


• Any approach to complete -equivariance must enable non-
polynomial approximations 

• Data augmentation is currently the best “equivariant” option for 

SL(2,ℝ)

SL(2,ℝ)



Future Directions
• Incorporating  structure without loss of expressivity


• For invariance: use separators, e.g. separating invariants or bilipschitz invariants


• Compute some non-polynomial equivariant feature and input to network?


• Applications!


• Non-synthetic data — e.g. replace solver calls in robotics application


• Multivariate extension with  (easy for data augmentation!)

SL(2,ℝ)

SL(d, ℝ)

Thanks! Questions?
arXiv:2312.02146



Experiments: Poly Min for Spherical Code Bounds
















