Learning Polynomial Problems with
SL(2,R)-Equivariance

Hannah Lawrence* Mitchell Harris™
MIT MIT

Polynomial Positivity is Useful

Fundamental problem: is p(x) > O forall x € X'?

S 5
4 - n
3 - 5
2 - 2 4
1- 14
0 0
_1—
2
3

-1 -
-2 -
-3 4
8 10'00 0 200 400 600 8 1000

Applications: robot path planning, dynamical system stability, designing nonlinear controllers

Positivity Verification is Useful

Fundamental problem: is p(x, y) > O for all x, y, provably?

Def. The d-lift 191 = [y? xyd-1 ... xd|"
Def. A matrix M represents p(x, y) if p(x) = p(x,y) = dl" ppxld] In fact, this is a way
of writing p(x) as a
d sum of squares,
%OO %01 yd—l p(x) = Zq q,(X)”
[yd xyd_l xd] :10 11 Xy i
My Mgy - x.d

If O represents p(x,y) and Q > 0, then p(x,y) > 0 for all x, y by definition

Positivity Verification is Useful

Fundamental problem: is p(x, y) > O for all x, y, provably?

R T
Def. The d-lift XV = [yd xyd=1 ... 9|

Def. A matrix M represents p(x, y) if p(X) = p(x, y) = ¥4 M1 .

Moy My, -+ yd
_ Mg My -] | xyd-]

[yd xyd 1 xd] : y.
My Mgy - x4

If O represents p(x,y) and Q > 0, then p(x,y) > 0 for all x, y by definition

constraint on
antidiagonal

sums of M

Max-Determinant via SDPs

For a given positive p, many M can represent it!

Convenient choice:
f(p) = argmax log det O such that p(¥) = ¥4 Ox¥ and Q > 0
Why?
— analytic center of the feasible region (avoiding boundary)

— has a unique solution if p is positive

Solve via convex optimization

What’s wrong with SDPs?

For a given positive p, many M can represent it!

Convenient choice:
f(p) = argmax log det O such that p(¥) = ¥4 Ox¥ and Q > 0
Why?
— analytic center of the feasible region (avoiding boundary)

— has a unique solution if p is positive

They are slow + scale poorly with degree!

What’s wrong with SDPs?

For a given positive p, many M can represent it!

Convenient choice:
f(p) = argmax log det O such that p(¥) = ¥4 Ox¥ and Q > 0
Why?
— analytic center of the feasible region (avoiding boundary)

— has a unique solution if p is positive

Possible acceleration: machine learning!

Machine Learning for SDPs

1. Generate many random problem instances, and solve them with a
classical solver

2. Use these solved instances as training data for a neural network

Why could ML help?

Might seem like a lot to hope for: positivity verification is NP hard!
 Can be reduced to problems in combinatorial optimization

However, can still hope for solving only on a specific data distribution!

. For example, pure square polynomials p(x) = ¢g(x)” are easier

 We don’t explicitly specify the form of such a distribution, but use it as
high-level intuition

Why could ML help?

Track record of ML accelerating slow computation:

* Accelerating density functional theory calculations for understanding
dynamics of possible catalysts, for example

Then use trained model
iInstead of expensive

Train on expensive

computations

computations on new
data!

Open Catalyst Project
Also: can verify a proposed catalyst with regular DFT

Why could ML help?

Track record of ML accelerating slow computation:

* Accelerating positivity verification for e.g. robot path planning,
dynamical system stability, etc.

: : 1 Then use trained model
Train on expensive 21 .)
] Instead of expensive

computations

computations on new
data!

Why could ML help?

p(X)

Why could ML help?

Why could ML help?

Why could ML help?

p()?)—» Is it positive? gad Trained Network

Why could ML help?

Success:
/ 7,

J/J€9Rad 's it positive? B Trained Network

Why could ML help?

Success:
/ M >0

A |s it positive? ™8 Trained Network RN N
p(x) P p(F) = x4y

\ Failure:
M * 0

Why could ML help?

Success:
/ M >0
M. with
— . . . /' ’
=d Is it tive? Emd T d Net k > S[T « o>
P) S) (F) = 34 MRl

\ Failure: Traditional SDP

M*0 Solver

Can check your machine-learned answer!

What kind of ML should we try?

What kind of ML should we try?

Observe: the problem exhibits symmetry

—

p(x)

What kind of ML should we try?

Observe: the problem exhibits symmetry

& — &3

O of maximal log det QO with
p(xX) = ;[d]Tch[d], 0 >0

X =(x,y)

p(x)

What kind of ML should we try?

Observe: the problem exhibits symmetry

& O of maximal log det QO with
X
! p(E) = ¥, 0 > 0

p(AX)
A = RZXZ

What kind of ML should we try?

Observe: the problem exhibits symmetry

& — &3

O of maximal log det QO with
p(xX) = ;[d]Tch[d], 0 >0

p(x)

A[d]TQA I then of maximal log det
P(AX) # p(AX) = ¥4 Al A ldIxld],

What kind of ML should we try?

Observe: the problem exhibits symmetry

~ of maximal log det O with
Here, AV is p) y o = —>g[d] :
defined by p(x) =x Ox, Q0 =0
(AT = AldIFd] l

A[d]TQA I then of maximal log det
P(AX) # p(AX) = ¥4 Al A ldIxld],

What kind of ML should we try?

Observe: the problem exhibits symmetry

X=(x,y) m ﬁ m
Ch f p(X) () solving a particular optimization problem
ange o
variables In
polynomial l

Some linear transformation of (J

p(AX)
A = RZXZ

Special Linear Group: SL(2,R)

SL(2,R) = {A € R?? : det(A) = 1) consists of area-preserving linear
transformations

Example: acts on bivariate polynomials as p ([;C]) = D (A [)yc])

Special Linear Group: SL(2,R)

SL(2,R) = {A € R?? : det(A) = 1) consists of area-preserving linear
transformations

Special Linear Group: SL(2,R)

SL(2,]

)=1{A €|

transformations

Local minima |

/

2

Global minimum

(@) g = ((1) (1))

X2+ det(A) = 1} consists of area-preserving linear

Special Linear Group: SL(2,R)

SL(2,R) = {A € R?? : det(A) = 1) consists of area-preserving linear
transformations

Global minimum

(@) g = ((1) (1))

How do we take into account this structure?

Primer on Equivariant Learning

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

X

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

)

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

oy
4

p1(8)x

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

)

p1(8)x # P2(8)f(x)

Primer on Equivariant Learning

-

N

Consider predicting from an input molecular system

Primer on Equivariant Learning

Consider predicting from an input molecular system

Primer on Equivariant Learning
in” ->

Consider predicting from an input molecular system

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

)

p1(8)x # P2(8)f(x)

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A function f : & — % is equivariant if

J(p1(8)x) = pr(g)f(x) Vx e X, Vge G

p(X) # QO

p(AX) # Al QAN

Primer on Equivariant Learning

Let G beagroup,andletp, : G > GL(Z)and p, : G —» GL(Y) be
group representations. A network N : & — % is equivariant if

N(p(g)x) = p,(g)N(x) Vx e X ,Vge G

p(X) w’ Q

) R Ao

Equivariant Learning: Approaches

Compact groups:

* Generalize convolutional networks to groups beyond translations
 Nonlinearities: pointwise vs tensor product

Non-compact groups:

 Approximate equivariance via Monte-Carlo approximation of integrals

* EXxact equivariance via tensor products and Clebsch-Gordan transform

Practical Difficulties of SL(2,R)

1. The induced representations can be arbitrarily poorly conditioned

Condition number of Ald]

Here, each line is a randomly chosen element of
SL(2); d = degree of the induced representation
(d = 0 is original 2 X 2 matrix)

Practical Difficulties of SL(2,R)

2. There is no finite, invariant measure over SL(2), so all points in the orbit of

a supported datapoint cannot be equally likely

Example:
1 n 0
X = lol,An= 0 L e SL(2)

44444
L 4

-

-
‘—
-

- oy
-
-
~

......
-
-~
-
.§

S s
-
i
-.-
-
* -----------

~
~
-~

-
-
-
-
-

= = -

In this example, the orbit of x is the entire x-axis, excluding the origin.

— Think of equivariant learning as out-of-distribution robustness

Irreducible Reps of SL(2,R)

Def. A group representation is a vector space V together with a map
p: G — GL(V) satisfying p(81)p(82) = p(8182) V81,8 € G

Def. An irreducible representation is a representation for which there does not
exist an invariant subspace W C V satisfying p(g¢)w € Wiorallg e G,w € W

The irreps are fundamental tools for understanding a group’s other representations:
for most groups of interest, can decompose a group representation into irreps:

Irrep (&)

Representation p(g) = U U1
rrep pi(g)

Finite-dim. Irreps of SL(2,R)

For each integer d > 0, the (d + 1)-dimensional vector space of degree d binary
forms (V(d)), is an irreducible representation of SL(2,R).

Inputs are
L 2 A3 already in irrep
Example: d = 3, 10x“y — 3y° € V(3) spaces!
Throughout, we assume a monomial basis for V(d) (i.e. x4, xd_ly, e, yd) and
d+1

represent elements of V(d) as vectors of coefficients in |

Example: 10x%y — 3y> writtenas [0 10 0 —3]

What is p, i.e. how does g € SL(2,R) act on polynomials?

p(g)p(X) = p(gx)

Linear, Learnable Layers?

Schur’s Lemma — Linear Layers

Essentially: describes all linear, equivariant mappings between irrep spaces

Must send an element of an irrep space to either O, or back to a copy of the

Vid))

Vid,)

same space!

Vid)) V(d)

Nonzero

Nonzero

How about a nonlinear layer?

Clebsch-Gordan: the transvectant

The tensor product of irreps Is a representation, and therefore itself decomposes
into irreps. (tensor product with self is not linear!)

For SL(2,R), the exact decomposition is:

min(d,,d,)

n=0
The linear, invertible, equivariant map establishing this isomorphism
min(d,,d,)
I:Vd)® V(d, — GB V(d, + d, — 2n) is known as the transvectant
n=0

Clebsch-Gordan: the transvectant

min(d,,d,)
I:Vd)® V(d, — @ V(d, + d, — 2n) is the transvectant
n=0

Let p(x;,y,) € V(d,) and g(x,, y,) € V(d,). The d; + d, — 2n component
of T(p ® q) is given by

0° ? \ & n J0"p d"q
. e — . X —1)"
l/jn(p Q) [(axl ayz aX2ay1) P q] mz=0 () (ﬂ”l) ax”—maym axmyn_m

X=X =X
Yy=1=W»

Clebsch-Gordan: the transvectant

min(d,,d,)
I:Vd)® V(d, — @ V(d, + d, — 2n) is the transvectant
n=0

Let p(x,y,) € V(d,) and g(x,,y,) € V(d,). The d| + d, — 2n component
of T(p ® q) is given by

0° ? \ & n J0"p d"q
. e — . X —1)"
l/jn(p Q) [(Oxl 0y2 dxzayl) P q] HZ) () (m) ax”—maym axmyn_m

X=X =X

Y=M1=»W
Input: two

homogeneous

polynomials Output: another homogeneous polynomial

SL(2,R)-Equivariant Architecture

Pairwise CIebsch-Go_r_dan Linear Layer
t Tensor Products Decomposition
Inpu
0
Degree 0: [0 0] [0 10101 xw —»-
0 C
o Y 0] [ed)] /
| 1_ ° ° 1
Degree 1 0 3 [(:8 [c& cll] [.] [.] X W
cx+ely o \ /
2 2.2
(2 0] |cg et 3] -1 || | X W?
€0
Deggee 2: - 612 _Cé_
c§x2+clxy+czy) [c& 611]
2 ct
= X W3
1
“| b2 s
- d I [Co 1 Cz]
CO Cl -
d
Degree d: o - . 4
cdxd+...+cjyd 5 €0 , X W
’ d 2| .2 .2 .2 :
Cd 1 [Co 1 Cz] L°]
c3

Final Layer Enforces p(¥) = x4 Qx4

How to (1) go from irrep vector spaces, to the vector space of matrices? and
(2) ensure that the output matrix represents the input polynomial?

A collection of
homogeneous wp
polynomials

Linear equivariant

map L

Final Layer Enforces p(¥) = x4 Qx4

How to (1) go from irrep vector spaces, to the vector space of matrices? and
(2) ensure that the output matrix represents the input polynomial?

A collection of
homogeneous mp
polynomials

Linear equivariant

» Output matrix 0

map L

High-level: restrict
mapping s.1.

p@) = 74'Qit!

Final Layer Enforces p(¥) = x4 Qx4

How to (1) go from irrep vector spaces, to the vector space of matrices? and
(2) ensure that the output matrix represents the input polynomial?

A collection of
homogeneous wp

Linear equivariant

_ map L
polynomials
where qlegree d Our choice of L
one is the enforces that
original p(x) this works

Note: the PSD property is what must be learned!

How expressive is this architecture?

Universality is a standard sanity check for neural architectures:

Can this architecture approximate any continuous (equivariant) function, if given
enough parameters (e.g. sufficiently large width or channels)?

How expressive is this architecture?

Universality is a standard sanity check for neural architectures:

Can this architecture approximate any continuous (equivariant) function, if given
enough parameters (e.g. sufficiently large width or channels)?

The answer is typically yes, and proceeds via a polynomial approximation
argument.

.e., show that the network can approximate any (equivariant) polynomial to
arbitrary precision, and then appeal to Stone-Welerstrass Theorem

How expressive is this architecture?

Universality is a standard sanity check for neural architectures:

Can this architecture approximate any continuous (equivariant) function, if given
enough parameters (e.g. sufficiently large width or channels)?

The answer is typically yes, and proceeds via a polynomial approximation
argument. &

.e., show that the network can approximate any (equivariant) polynomial to
arbitrary precision, and then appeal to Stone-Welerstrass Theorem

How expressive is this architecture?

Universality is a standard sanity check for neural architectures:

Can this architecture approximate any continuous (equivariant) function, if given
enough parameters (e.g. sufficiently large width or channels)?

The answer is typically yes, and proceeds via a polynomial approximation
argument. &

.e., show that the network can approximate any (equivariant) polynomial to
arbitrary precision, and then appeal to Stone-Welerstrass Theorem

Early work on universal equivariant architecture by Yarotsky 2018; proven for
Clebsch-Gordan nets and similar architectures by Bogatskiy et al 2020

Surprise: it is not universal

This Is a sharp contrast to previous, very analogous work!

Counterexample: max-det function

Theorem. Let A w(p) denote the network output with (learned) parameters

W applied to the input p. Let f be the continuous, SL(2,R)-equivariant
function

f(p) = argmaxlog det O such that p(x) =)_c’[d]TQ)_c’[d] and Q > 0

There exists an input polynomial p, and an absolute constant ¢ > 0 such

that forany W, | f(p) — A w(p)| > €. Therefore, the architecture is not
universal.

Proof outline of counterexample

Def. Call the monomial x*y” balanced mod b if k = r (mod b). The
polynomial p is balanced mod b if it is the weighted sum of monomials that
are all balanced mod b.

Lemma. If f and g are balanced mod b, then Vn y (1, g) is balanced mod b.
Similarly, the linear layer and MLP on invariants preserve balancedness.

Example: x2y2 and x° balanced mod 8, because 2 = 2 (mod 8) and
8 =0 (mod 8). However, x’yisnot:3 % 1 (mod 8).

Proof outline of counterexample

Proof of theorem. Let p(x,y) = x% 4 y8. Since p is balanced mod 8, so too is the final
network output. In particular, the degree 4 component can only contain the monomial
xzyz. In total, the last layer of the network (for the max-log-det problem) takes as input
the monomials x8, y8, x4y4, xzyz, and 1, all of which map to a matrix of sparsity pattern

X
0
0
0
X

S X © OO
S O X OO
S O O X O

X
0
0
0
X

However, the computed matrix f(x® + y®) does not match this sparsity pattern.

Not approximable by any polynomial!

Is this just a problem with our choice of architecture?

* Using the same techniques as Bogatskiy et al, one can show that our network can
approximate any equivariant polynomial

Is It a contrived or unnatural function?

 Nope, it’s the exact function we want to approximate!

Therefore, the max log det function f cannot be approximated by equivariant
polynomials

* This suggests that any hope of getting around the issue must use a fundamentally
different paradigm and proof of universality than prior work

Intuitively, what has gone wrong?

Plenty of analogous architectures, even for non-compact groups, are universal. What’s different?
« The hard function f is only defined on positive polynomials, not on all inputs

» We work with real values, i.e. SL(2,R) instead of SL(2,C)

* Previous work relies on integration over a maximal compact subgroup, the special
orthogonal group. In the complex case, SO(2,C) and SL(2,C) invariants are equivalent.

 But not so in the real-valued case! E.g. a + ¢ is an invariant of the polynomial
ax’ + bxy + cy* under an SO(2,R) action, but is not an invariant under an SL(2,R)
action.

Was this all a waste — should we throw out our knowledge of SL(2,[R)?

No!

Alternative: Data Augmentation

For each training point (p(x), f(p(x))), apply a random SL(2,R)
transformation:

(p(X), f(p(X))) - (p(AIYR), Al f(p(x))A!) where A ~ u(SL(2,R))
Doesn’t enforce equivariance strictly, but:

« Standard method for encouraging out-of-distribution robustness

 Easy to combine with any architecture

Alternative: Data Augmentation

For each training point (p(x), f(p(x))), apply a random SL(2,R)
transformation:

(p(X), f(p(X))) — (P(AI%), Al f(p(¥)A¥)) where A ~ u(SL(2,R))

What distribution ¢ to choose?

Restrict the condition number of Al

Experiments: Methods

Model Name Description
mlp-aug-rots MLP with rotation augmentations
mlp-aug-a-b MLP with augmentations by g!¢ and g has condition number « s.t. a < k < b
SO2Net-aug-a-b | SO(2,R) equivariant network with data augmented by ¢!¥ as above
SO2Net SO(2,R) equivariant architecture with no data augmentation
SL.2Net SL(2,R) equivariant architecture with no data augmentation
MLP multilayer perceptron with no data augmentation

Experiments: Synthetic Data

Data generation: only positive polynomials

Sample U € R4 1Xd+1 yjq Ui ~iia N(O,1)

Set p(¥) = X4 (UTU + 10730)x!9) which is positive

Labels: computed using the Mosek optimizer

Experiment Results

= gl|2net
mIip-aug-rots
-—Q--- m
1072 "

= | —e— mip-aug-1-3

= | ‘. | —*— mlp-aug-3-5

1073 —e— mip-aug-5-7/

= so2net-aug-1-3

—¥— so2net-aug-3-5
so2net-aug-5-7
—¥-- so2net

-
9
I

10 10t 107
Condition Number of Induced SL(2, R)-Transform

>

Increasing test dist. shift

MLP with data augmentation by well-conditioned elements of SL(2,R) is best!

MLP Is faster than a convex solver!

Degree 6 8 10 12 14
MLP NMSE | 9.5e-6 6.0e-5 2.9e-5 2.3e-5 1.le-5
MLP times (min) | 0.062 0.082 0.17 022 0.29
SCSNMSE | 2.7e-5 6.2¢e-5 1.2e-4 2.7e-4 1.2e-3
SCS times (min) | 3.50 4.94 9.11 18.8 374

SCS: a first order solver (O’'Donoghue et al 2016)

NMSE: normalized mean squared error, with respect to the ground truth labels
computed by the second order solver, Mosek (ApS, 2022)

These times are estimates for 5,000 test examples on a single CPU

— The trained MLP has a much faster forward pass than a solver, at same errotr!

Conclusions

 Machine learning is a promising avenue for accelerating polynomial
problems

 Even a simple architecture can harness patterns in a dataset not used
by traditional convex solvers

 Non-compact group equivariance can be very subtle, despite analogies to
compact groups!

» Any approach to complete SL(2,[R)-equivariance must enable non-
polynomial approximations

» Data augmentation is currently the best “equivariant” option for SL(2,R)

Future Directions

* Incorporating SL(2,R) structure without loss of expressivity

* For invariance: use separators, e.g. separating invariants or bilipschitz invariants
e Compute some non-polynomial equivariant feature and input to network??
* Applications!

 Non-synthetic data — e.g. replace solver calls in robotics application

« Multivariate extension with SL(d, R) (easy for data augmentation!)

Thanks! Questions?
arXiv:2312.02146

Experiments: Poly Min for Spherical Code Bounds

106 ‘ - m|p
/ g mlp-aug-3-4
. 103 = g|2net
O *— soZ2net-aug-1-2
';'j *— soZ2net-aug-2-3
@ *— mlp-aug-1-2
soZnet
*— soZnet-aug-3-4
mlp-aug-2-3

10° 10! 107
Condition Number of Induced SL(2, R)-Transform

Background: group invariance can be a useful inductive bias

Example: “rotated MNIST on the sphere”

Source(s): Cohen, Taco S., et al. "Spherical cnns." arXiv preprint arXiv:1801.10130 (2018).
Image source(s): https://openreview.net/pdf?id=Hkbd5xZRb

/

N

Labeling is
Invariant under
3D rotations

\

J

Background: group symmetries

SO

Main idea: enforce group symmetries via
architecture of network

How to build such an architecture?

Source(s): Cohen, Taco S., et al. "Spherical cnns." arXiv preprint arXiv:1801.10130 (2018).
Image source(s): https://openreview.net/pdf?id=Hkbd5xZRb

Group convolutions are equivariant

Familiar convolution (1D translation group): £ g : IR — IR

(f *g)(z /f(-’v y) 9(y) dy

Convolution with respect to a general group: f . q G — R

(f*g)(w) =) fluw™")g(v)

veG
To build a G-equivariant neural net, one can compose convolutions and
non-linearities as in an ordinary CNN

*Can be generalized to
functions on spaces on
which G acts

Example: Spherical CNNs

‘ Input to next layer

At each layer: convolve them and apply
. pointwise nonlinearity

|

\

’

Learned filter (function on sphere or or
rotation group)

Repeat with a new filter

Input: function on a sphere for each layer

Spherical CNNs by Cohen, Geiger, Kohler, and
Welling

Tool: Fourier Analysis on Compact Groups

Classical Group
fJR—=C f:G—C
o =" R — C p: G — C™ >

F(k) = / F£(0)d0 f(1)

Tool: Fourier Analysis on Compact Groups

Classical Group
f(6) = / e~ f(kydk | flg) =) tr[f(Dplg™")
R (=0
{ p k} form basis for L2 (R) { p l} matri>:) ggitsrifzsr form L2 (G)

/\ /\ A\

Convolutions in Fourier space, in practice

Input: function on a sphere

S0O(3)-transform

\r

<

S0O(3)-transform

&

\

J

(

<

Matrix multiplication

\

/

Learned filter (function on sphere or

rotation group)

Inverse
’

transform

7/

Pointwise

= nonlinearity

Input to next
layer

