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Graph Autoencoder

But: retaining the inductive bias of equivariance on asymmetric inputs is still desirable. 

Equivariance:

Equivariance preserves data symmetries: for all group elements ,g

Network
SO(3)

This is restrictive: an equivariant 
network can’t turn a symmetric 

input into an asymmetric output

Suggests: learn a map to equivariant distributions , such that 
individual samples from  can break the symmetry of 

f : X → 𝒫(Y )
f (x) x
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Task: Given vertical and horizontal interaction strengths ( , ), output a configuration 
(up or down spin for each node in the grid graph) of minimal energy

Jx Jy

Problem: Noising process is likely to introduce symmetries that cannot be denoised

Denoising

Diffusion

Experiment: DiGress discrete diffusion with graph transformer, using SymPE with sorting 
canonicalization to break symmetries

Method NLL
DiGress 129.7

DiGress + noise 126.5

DiGress + SymPE 30.3

Phase of predicted ground states. Green: antiferromagnetic, Red: ferromagnetic, 
Blue: Stripes, Black: No order.

Background: Symmetries in ML

Equivariant functions can’t break symmetries…

f : X → Y, g ∈ G
Energy

Forces
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equivariant: rotated
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How can we learn equivariant distributions?

Equivariant networks can’t break symmetries, 
which is problematic for generative models. 
We use symmetry-breaking positional 
encodings to minimally break symmetry.

Generalization benefits Can break symmetries

Non-equivariant model

Equivariant model

Symmetry-breaking (goal)

Probabilistic Representation Theorem

Symmetry-Breaking Positional Encodings

Experiments

Problem: An -equivariant encoder with per-node embeddings can spuriously 
introduce extra symmetry, which an -equivariant decoder cannot break.

Sn
Sn

Solution: Break symmetries via sorting a learned scalar 
embedding per-node, where sorting breaks ties

Experiment: Erdös-
Renyi random graphs 
from [4] with GNN auto 
encoder architecture

Method % Correct 
Edges

No symmetry-breaking 3.9
Noise (randomly initialized node features) 2.3

Randomly permuting instead of sorting 1.3
Passing in Laplacian encodings directly (no sorting) 0.98

Our method: sorting learned embeddings 0.77

Embedding

Encoder
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, instead outputs

Algorithm 1 SymPE: Symmetry-Breaking Positional Encodings
1: Inputs: input x → X

2: Learnable parameters: learned vector v → V , equivariant neural network parameters ω,
canonicalization parameters ε

3: Sample g̃ ↑ hω (x) ϑ Sample group element for canonicalization
4: ṽ ↓ g̃v ϑ Apply group element to learned vector
5: Return fε(x ↔ ṽ) ϑ Forward pass with positional encoding

“Equivariant randomness” 
to break symmetries

Y a.s.= f(X, g̃, ϵ)
“Arbitrary randomness”

Theorem:    is equivariant iff, for some  jointly equivariant 
in  and  (i.e. ), , and  as defined below,

Y |X f : X × G × (0,1) → Y
X g f (hx, hg, ϵ) = hf (x, g, ϵ) ϵ ∼ Unif(0,1) g̃ |X

Symmetric input 
Asymmetric output

Generalization to “noise injection”: can let  more generally be a random variable 
with no self-symmetries and 

g̃
g̃ |X ∼ hg̃ |hX

 Sometimes easier to compute, e.g. to avoid solving graph automorphism! Also, applies to [3]→

 requires a source of randomness (“noise outsourcing”, e.g. [2])→
Many objects are themselves inherently symmetric:

How do we achieve this? First, observe that any of these outputs is equally good:

To make an equivariant network  break symmetries, we use 
canonicalization to sample a random  and add it as input

f
g̃

f(gx) = gf(x)

Canonicalization conveniently 
provides this randomness

“canonical” formarbitrary orientation

g̃ ∼ Unif{30∘, 210∘}

 should have as little randomness as possible to distinguish among the 
symmetrically equivalent outputs, e.g. 
g̃

x = gx → f(x) = f(gx) = gf(x)

Equivariant distributions can break symmetries

Interaction strengths have self-
symmetry: reflections & 

translations 

 symmetryC4  symmetryS4  symmetryC4

Energy function has 
symmetry: rotations, 

translations, and 
reflections


