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Improving Equivariant Networks with Probabilistic Symmetry Breaking
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Equivariant networks can’t break symmetries

Graph Generation with Diffusion Models

=

Equivariance: = Energy R which is problematic for generative models
f:X>Y,g€G «6°¢&

J(gx) = gf(x)

Problem: Noising process is likely to introduce symmetries that cannot be denoised

»%» Forces We use symmet.ry:breaklng positional 21
encodings to minimally break symmetry e g

Benefits in

o Equivariant Denoising
eneralization,
sa?nple complexity \_ Network - Experiment: DiGress discrete diffusion with graph transformer, using SymPE with sorting
canonicalization to break symmetries How ofen the forward kerel “adds’ symmetries
Probabilistic Representation Theorem L
DiGress 129.7 -
. . . . . DiGress + noise 126.5 Z“_::
How can we learn equivariant distributions? DiGress + SymPE 203 “

~

— requires a source of randomness (“noise outsourcing”, e.g. [2])

Ising Model

. 4 . 3 | Task: Given vertical and horizontal interaction strengths (/,,/,), output a configuration
in X'and g (i.e. f(hx, hg, €) = hf(x, g, €)), € ~ Unif(0,1), and g| X as defined below, (up or down spin for each node in the grid graph) of minimal energy

Theorem: Y |X is equivariant iff, for some f : X X G X (0,1) = Y jointly equivariant

\

Equivariance preserves data symmetries: for all group elements g, as. .
Y = f(X, g, €) Interaction strengths have self-

x = gx — f(x) = f(gx) = gf(x) psyrmeticouput” A R Arbitrary randormess” T e

Symmetric input “Equivariant randomness”

. to break symmetries
~[ ] <
Netwo rk | Ground truth | MLP | G-CNN | G-CNN + SB

g should have as little randomness as possible to distinguish among the
o . o o o o . symmetrically equivalent outputs, e.g. ﬁ n Q Q q a
But: retaining the inductive bias of equivariance on asymmetric inputs is still desirable.

Energy function has
symmetry: rotations,
translations, and

reflections

Generalization benefits Can break symmetries \ i » < -
Non-equivariant model Canonicalization conveniently '\‘ & ~ Unif{30°, 2107} I | | | |
M M 4 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 ~1.0 -0.5 0.0 0.5 1.0 ~1.0 -0.5 0.0 0.5 1.0
. . prOVIdeS thlS raﬂdomness ' Vertical Interaction /¥ ' Vertical Interaction J¥ Vertical Interaction J¥ Vertical Interaction /¥
Equivariant model
arbitrary orientation “canonical” form
Symmetry-breaking (goal) Phase of predicted ground states. Green: antiferromagnetic, Red: ferromagnetic,
Generalization to “noise injection”: can let g more generally be a random variable Blue: Stripes, Black: No order.

How do we achieve this? First, observe that any of these outputs is equally good: with no self-symmetries and g | X ~ hg|hX

Graph Autoencoder

— Sometimes easier to compute, e.g. to avoid solving graph automorphism! Also, applies to [3]
Problem: An §,-equivariant encoder with per-node embeddings can spuriously

introduce extra symmetry, which an §,-equivariant decoder cannot break.

Symmetry-Breaking Positional Encodings

T_ S, S,
individual samples from f(x) can break the symmetry of x © _l_> _'g M XI:I , instead outputs m
1
.’ € @ Embedding
<

Suggests: learn a map to equivariant distributions f : X — 9(Y), such that

C, symmetry ——» S, symmetry %» C, symmetry

Eauivariant
BN Network ' BN

o o [ J [ J (] o x
Equivariant distributions can break symmetries
©_> _>§ e {Oo’ 600, h 3000}
Method ﬁ
I

“ 1
@ p=v Solution: Break symmetries via sorting a learned scalar
embedding per-node, where sorting breaks ties
To make an equivariant network f break symmetries, we use

canonicalization to sample 2 random & and add it 2 Inpu I 5
Experiment: Erdos- Edges

n _ d - No symmetry-breaking 3.9
: : _ : enyi random graphs : T
Algorithm 1 SymPE: Symmetry-Breaking Positional Encodings ' Noise (randomly Iﬂl.tla|l'Zed node featljlres) 2.3
I Inouts: i pe from [4] with GNN auto Randomly permuting instead of sorting 1.3
- Inputs: nputz < : Passing in Laplacian encodings directly (no sorting) 0.98
2: Learnable parameters: learned vector v € V), equivariant neural network parameters 6, encoder architecture : & : - e E '
canonicalization parameters ¢ Our method: sorting learned embeddings 0.77
3: Sample g ~ hy () > Sample group element for canonicalization References
4: U+ gu > Apply group element to learned vector 1.5.-O. Kaba and S. Ravanbakhsh. Symmetry breaking and equivariant neural networks, 2023.
5: Return fg (:E D 17) > Forward pass with positional encoding 2. B. Bloem-Reddy and Y. W. Teh. Probabilistic symmetries and invariant neural networks, 2020
3.Y. Xie and T. Smidt. Equivariant symmetry breaking sets, 2024.
4.V. G. Satorras, E. Hoogeboom, and M. Welling. E(n) equivariant graph neural networks, 2021

5. C. Vignac et al. Digress: Discrete denoising diffusion for graph generation, 2022.



