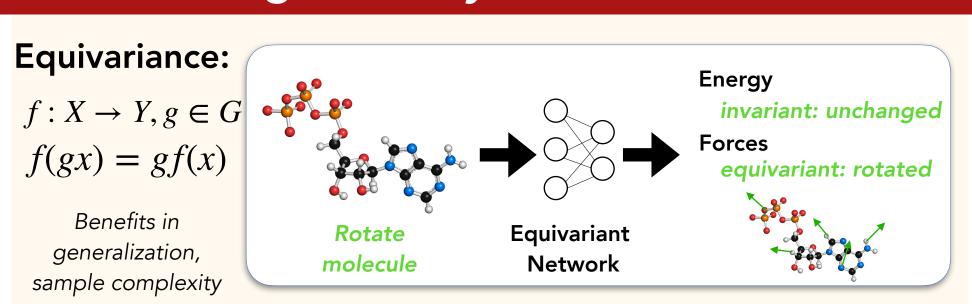
Improving Equivariant Networks with Probabilistic Symmetry Breaking

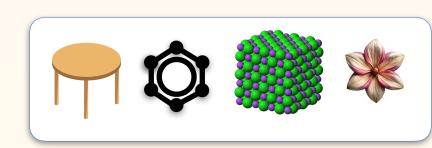
Hannah Lawrence*, Vasco Portilheiro*, Yan Zhang, Sékou-Oumar Kaba

Background: Symmetries in ML



Equivariant functions can't break symmetries...

Many objects are themselves inherently symmetric:



Equivariance preserves data symmetries: for all group elements g,

$$x = gx \to f(x) = f(gx) = gf(x)$$

This is restrictive: an equivariant network can't turn a symmetric input into an asymmetric output

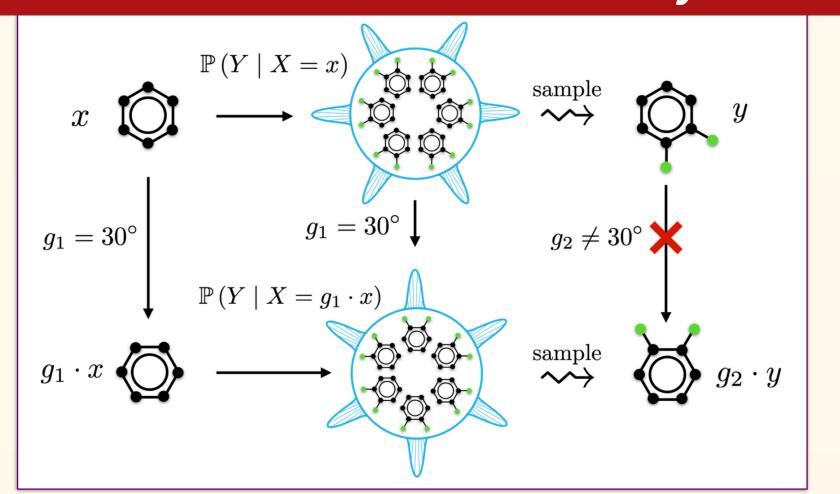
But: retaining the inductive bias of equivariance on asymmetric inputs is still desirable.

	Generalization benefits	Can break symmetries
Non-equivariant model	X	
Equivariant model		X
Symmetry-breaking (goal)		

How do we achieve this? First, observe that any of these outputs is equally good:

Suggests: learn a map to equivariant distributions $f: X \to \mathcal{P}(Y)$, such that individual samples from f(x) can break the symmetry of x

Equivariant <u>distributions</u> can break symmetries



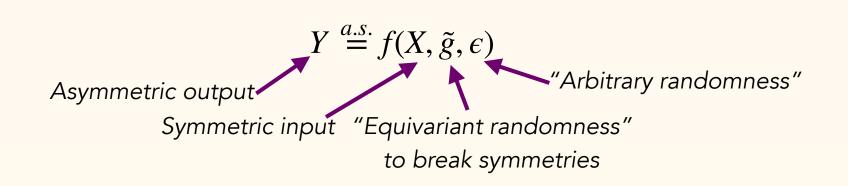
Equivariant networks can't break symmetries, which is problematic for generative models. We use symmetry-breaking positional encodings to *minimally* break symmetry.

Probabilistic Representation Theorem

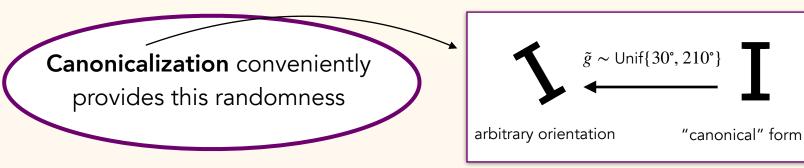
How can we learn equivariant distributions?

→ requires a source of randomness ("noise outsourcing", e.g. [2])

Theorem: $Y \mid X$ is equivariant iff, for some $f: X \times G \times (0,1) \to Y$ jointly equivariant in X and g (i.e. $f(hx, hg, \epsilon) = hf(x, g, \epsilon)$), $\epsilon \sim \text{Unif}(0,1)$, and $\tilde{g} \mid X$ as defined below,



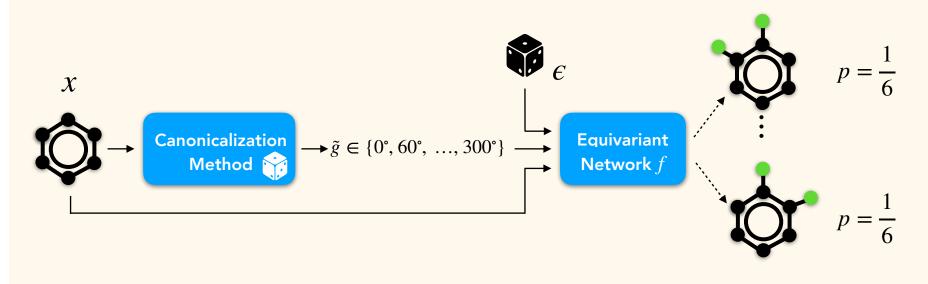
 \tilde{g} should have as little randomness as possible to distinguish among the symmetrically equivalent outputs, e.g. to to to



Generalization to "noise injection": can let \tilde{g} more generally be a random variable with no self-symmetries and $\tilde{g} \mid X \sim h\tilde{g} \mid hX$

→ Sometimes easier to compute, e.g. to avoid solving graph automorphism! Also, applies to [3]

Symmetry-Breaking Positional Encodings



To make an equivariant network f break symmetries, we use canonicalization to sample a random \tilde{g} and add it as input

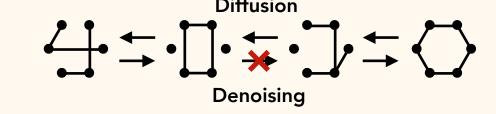
Algorithm 1 SymPE: Symmetry-Breaking Positional Encodings

- 1: **Inputs:** input $x \in \mathcal{X}$
- 2: Learnable parameters: learned vector $v \in \mathcal{V}$, equivariant neural network parameters θ , canonicalization parameters ϕ
- 3: Sample $\tilde{g} \sim h_{\phi}(x)$
- > Sample group element for canonicalization ▶ Apply group element to learned vector
- 4: $\tilde{v} \leftarrow \tilde{q}v$
- 5: Return $f_{\theta}(x \oplus \tilde{v})$ > Forward pass with positional encoding

Experiments

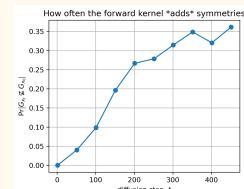
Graph Generation with Diffusion Models

Problem: Noising process is likely to introduce symmetries that cannot be denoised



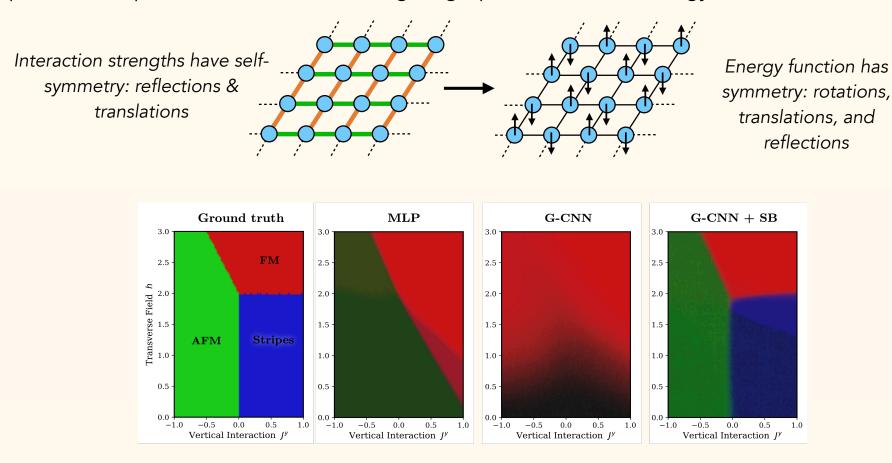
Experiment: DiGress discrete diffusion with graph transformer, using SymPE with sorting canonicalization to break symmetries

Method 129.7 DiGress DiGress + noise 126.5 DiGress + SymPE



Ising Model

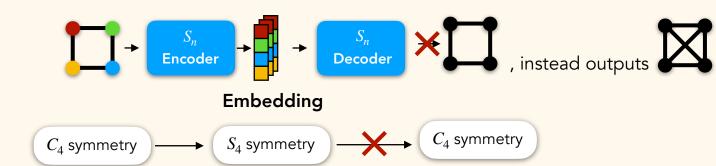
Task: Given vertical and horizontal interaction strengths (J_x, J_y) , output a configuration (up or down spin for each node in the grid graph) of minimal energy



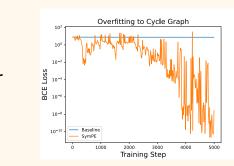
Phase of predicted ground states. Green: antiferromagnetic, Red: ferromagnetic, Blue: Stripes, Black: No order.

Graph Autoencoder

Problem: An S_n -equivariant encoder with per-node embeddings can spuriously introduce extra symmetry, which an S_n -equivariant decoder cannot break.



Solution: Break symmetries via sorting a learned scalar embedding per-node, where sorting breaks ties



Experiment: Erdös-Renyi random graphs from [4] with GNN auto encoder architecture

Method	% Correct
	Edges
No symmetry-breaking	3.9
Noise (randomly initialized node features)	2.3
Randomly permuting instead of sorting	1.3
Passing in Laplacian encodings directly (no sorting)	0.98
Our method: sorting learned embeddings	0.77

References

- 1.S.-O. Kaba and S. Ravanbakhsh. Symmetry breaking and equivariant neural networks, 2023.
- 2. B. Bloem-Reddy and Y. W. Teh. Probabilistic symmetries and invariant neural networks, 2020
- 3. Y. Xie and T. Smidt. Equivariant symmetry breaking sets, 2024.
- 4. V. G. Satorras, E. Hoogeboom, and M. Welling. E(n) equivariant graph neural networks, 2021
- 5. C. Vignac et al. Digress: Discrete denoising diffusion for graph generation, 2022.