## Distributional Symmetry-Breaking

or: spurious correlations meets equivariance

Hannah Lawrence, Simons Institute Lightning Talk 8/12/25

## Birdwatching 101



Brown creeper: walks up trees



Nuthatch: walks down trees

Example credit: Walters lab

## Birdwatching 101



Brown creeper: walks up trees

Nuthatch: walks down trees

Example credit: Walters lab

## Birdwatching 101

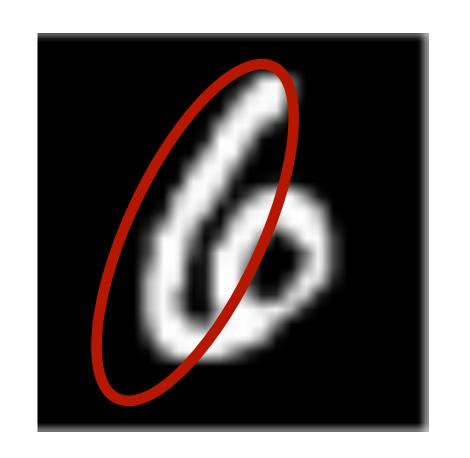


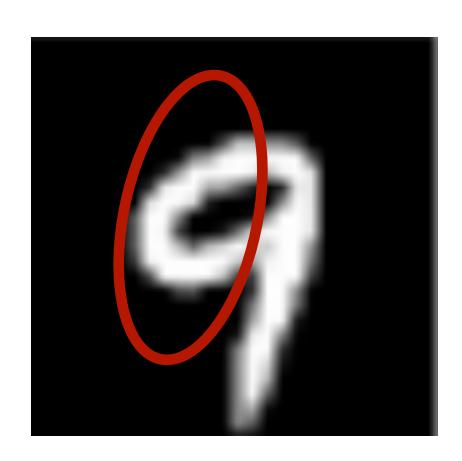
Brown creeper: walks up trees

Nuthatch: walks down trees

Example credit: Walters lab

## MINIST Example

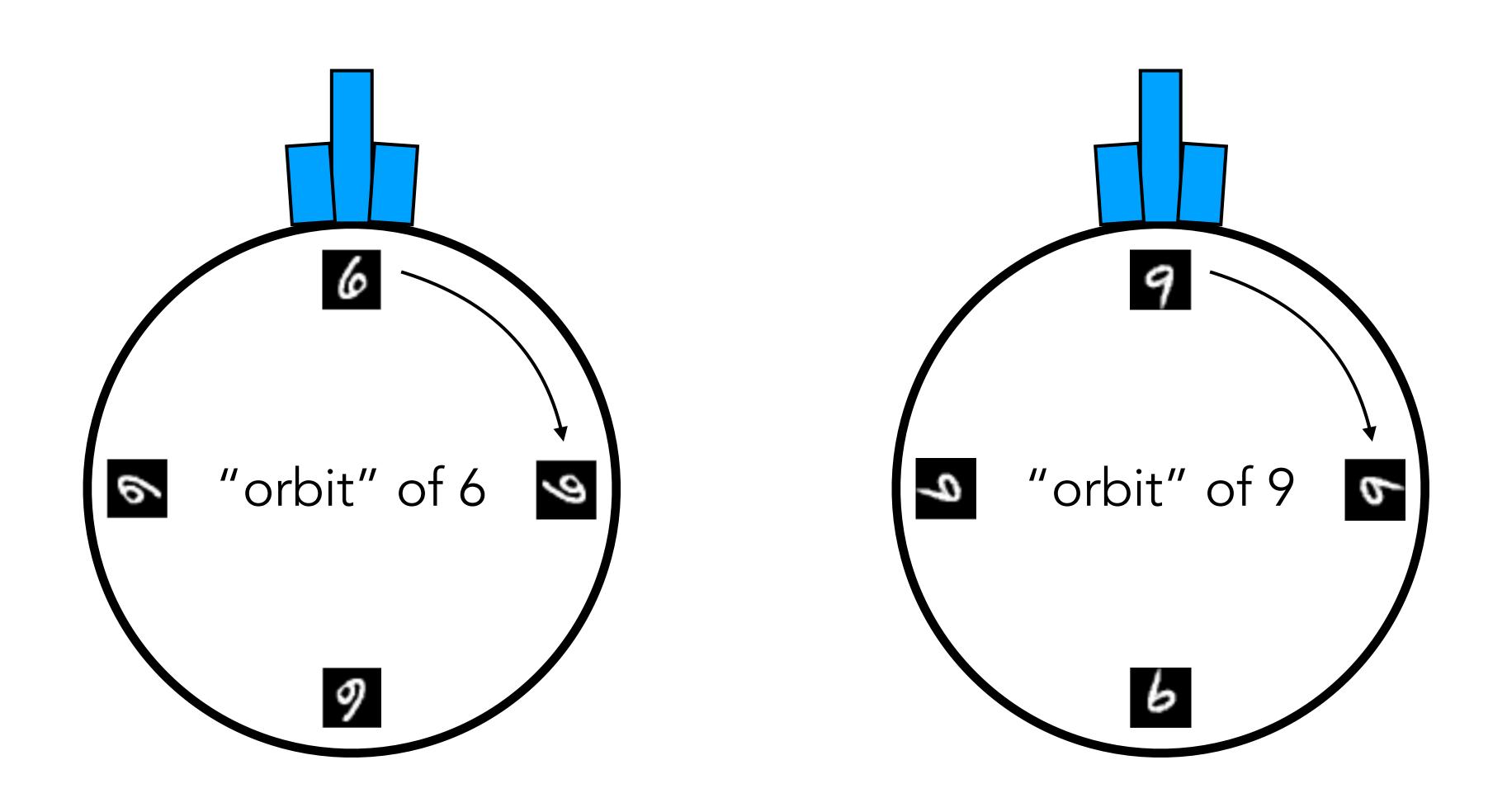




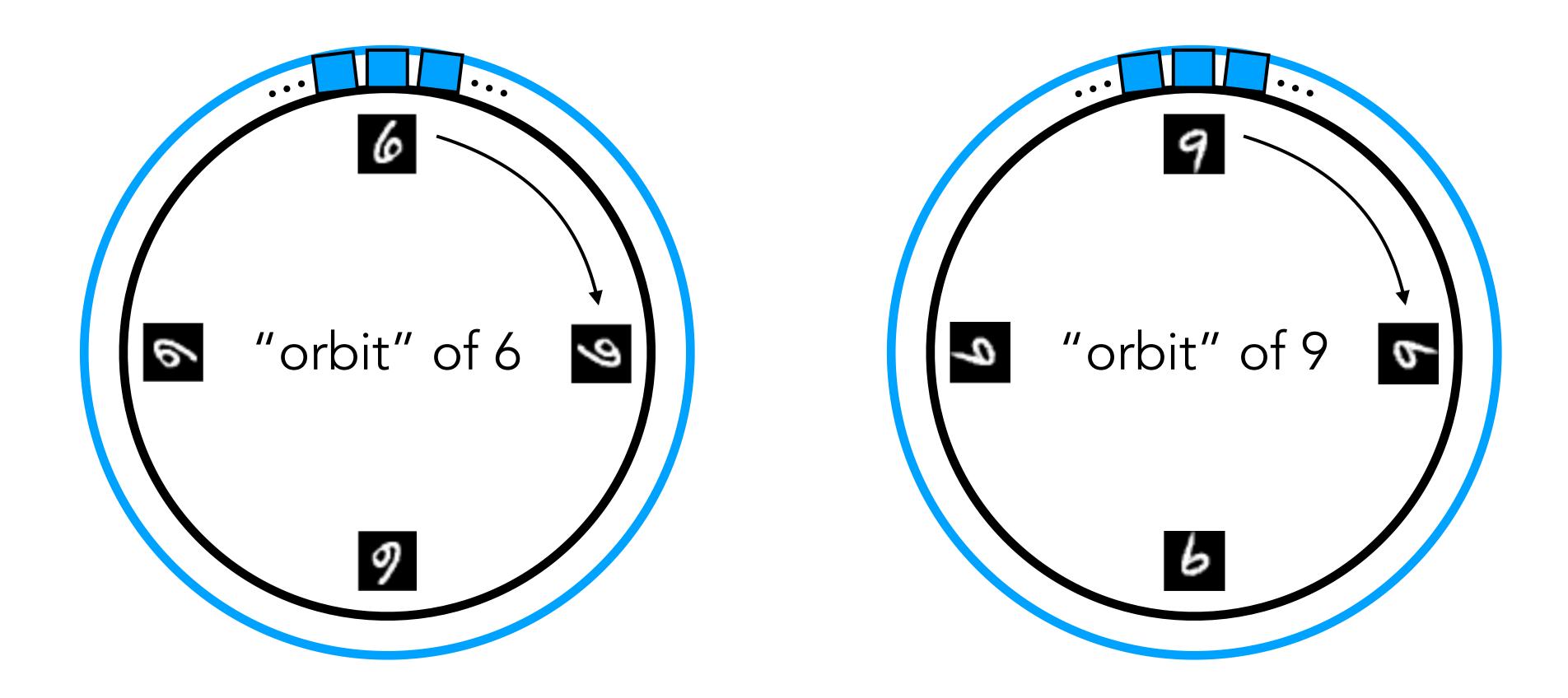
Digits have preferred orientation, which conveys useful information

...even if the actual digits are technically distinguishable

#### The data distribution as orbits



### What an equivariant method sees

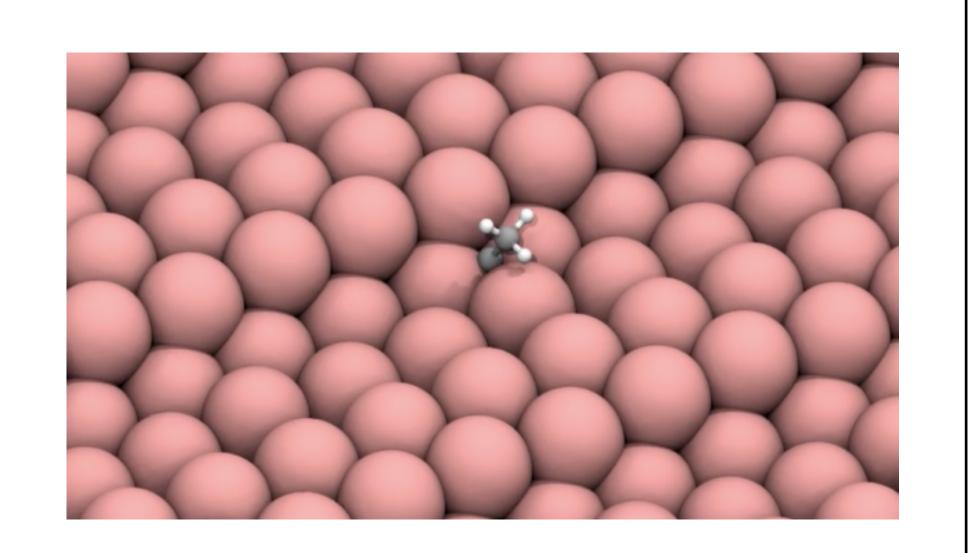


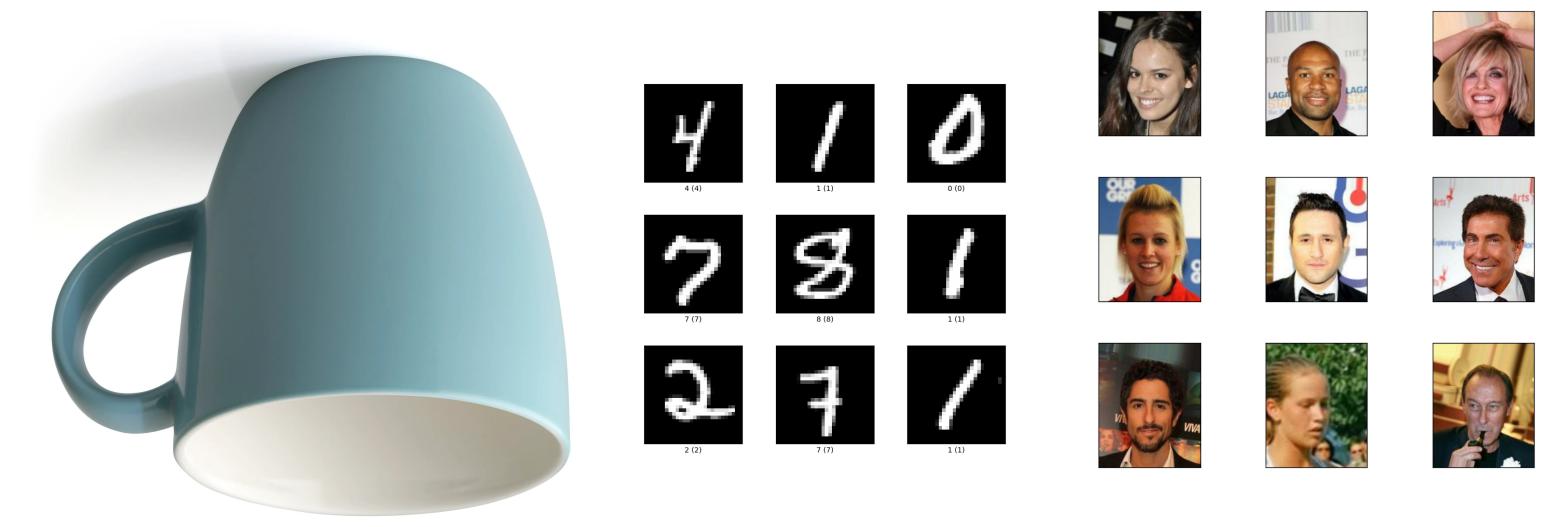
As if all mass is equally distributed on the orbit

## What's happening here?

- The underlying function is rotation invariant
- However, the data distribution is NOT uniform over orbits: x (bird pointed up) and gx (bird pointed down) are not equally likely
  - Different species of birds or digits have preferred orientations, which they're more likely to be found in
- Theoretically, the best invariant model can still tell the difference between the birds, but it is forced to use potentially "hard" features, like feather coloration, rather than the "easy" non-invariant feature of orientation

#### Actually, lots of data has preferred orientations





**Superficial:** user-defined; due to convention in how the data was generated/stored

Fundamental: some more fundamental, replicable process in the data generation

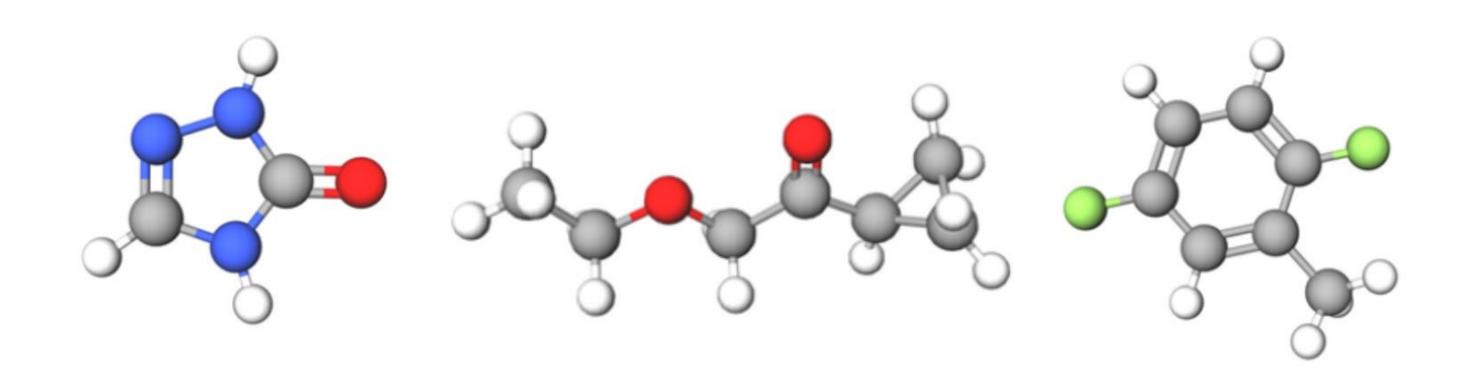
## Why do we care?

- Understanding your data is important!
- If you only care about generalizing in-distribution...
  - by using an invariant method, you might be throwing away useful information without realizing it
- If you care about generalizing out of distribution, to new orientations...
  - by using a non-invariant method, you might be led astray by overoptimistic validation performance

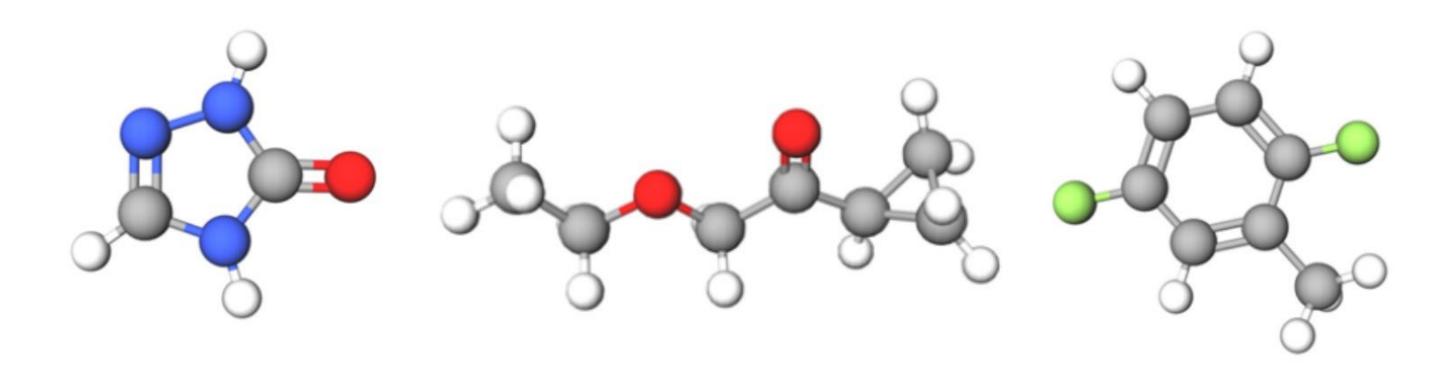
## Goals of this study

- Quantify the extent to which benchmark point cloud datasets are distributed evenly over rotations
  - Build on current metrics (e.g. kernel-based hypothesis test framework,
     Chiu & Bloem-Reddy 2024)
- **Empirically** test what the implications are for learning with/without augmentations

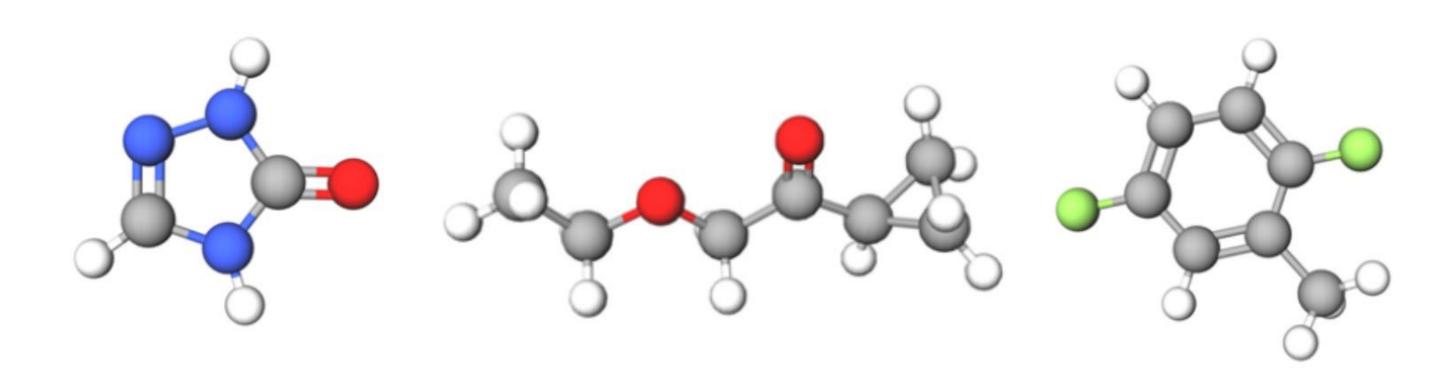
Note: distinct from the symmetry discovery problem!



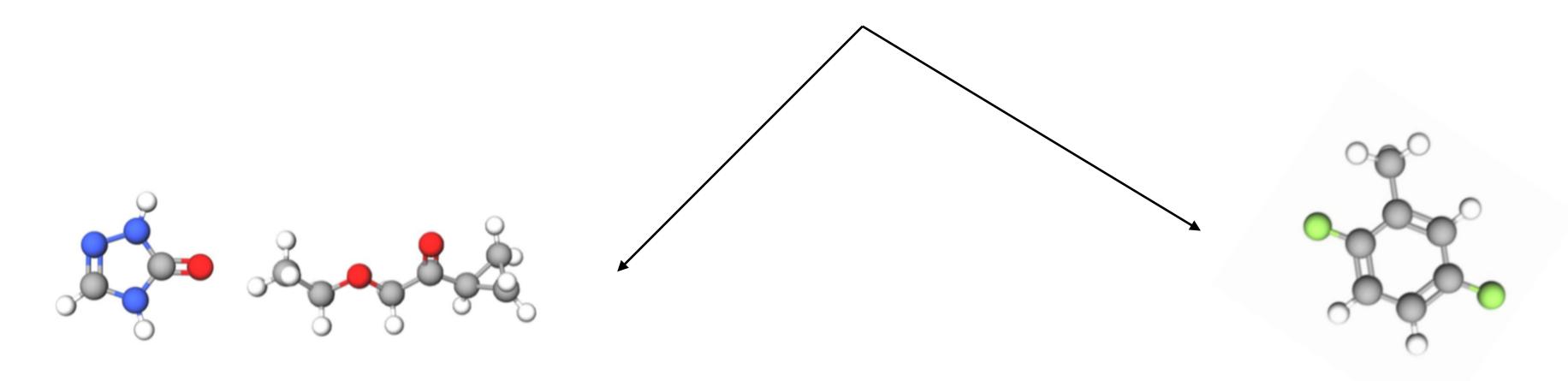
Start with your natural dataset



Split it into two halves

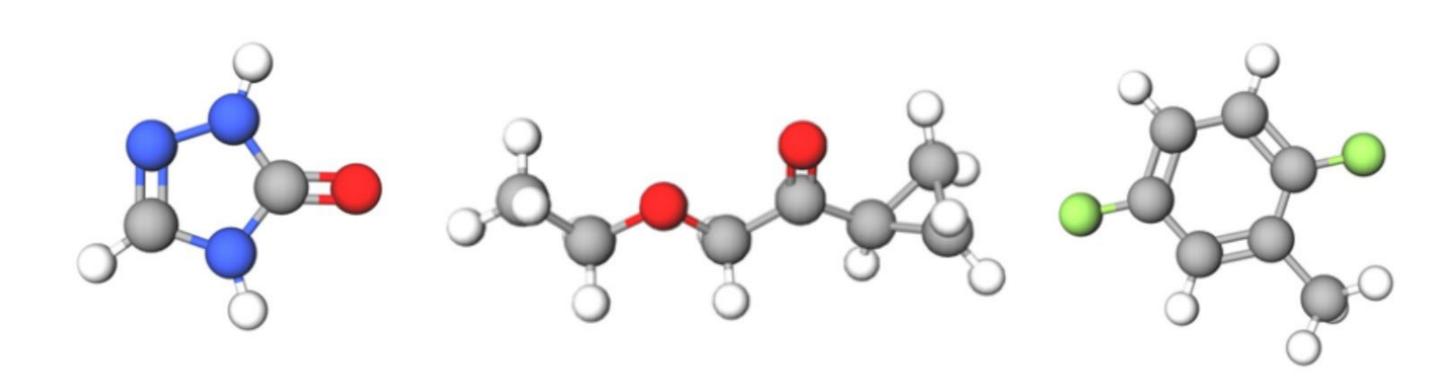


Split it into two halves

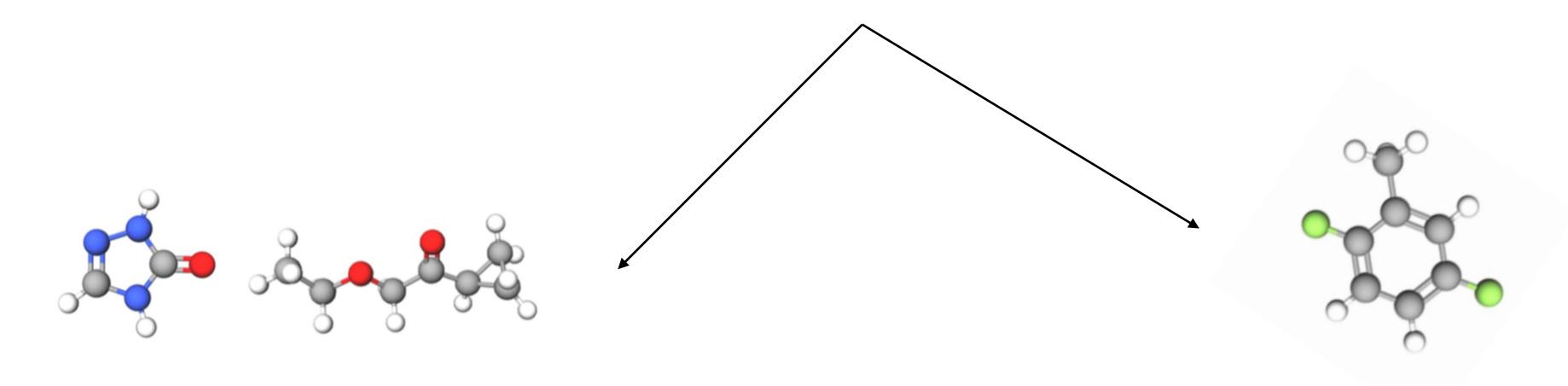


Don't change anything

Randomly rotate everything

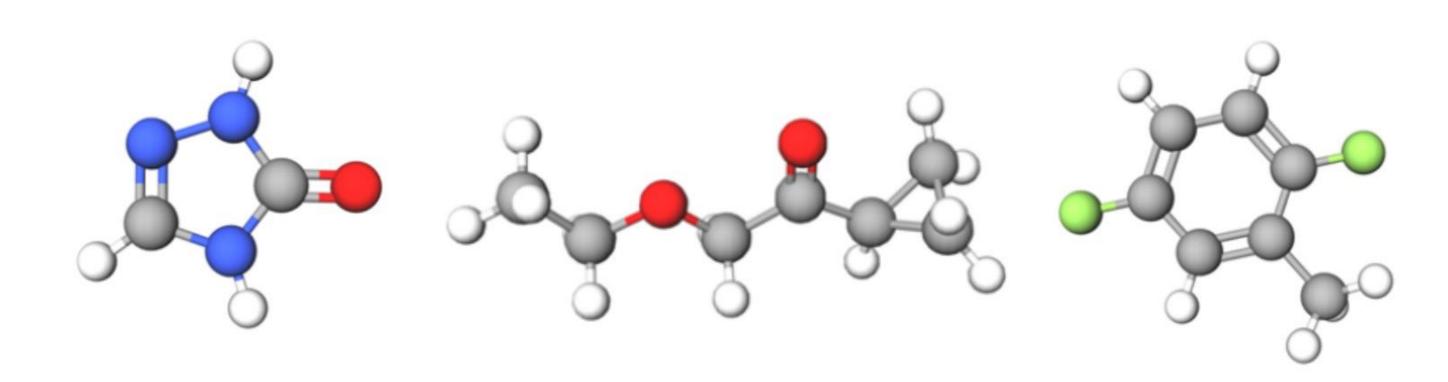


Split it into two halves

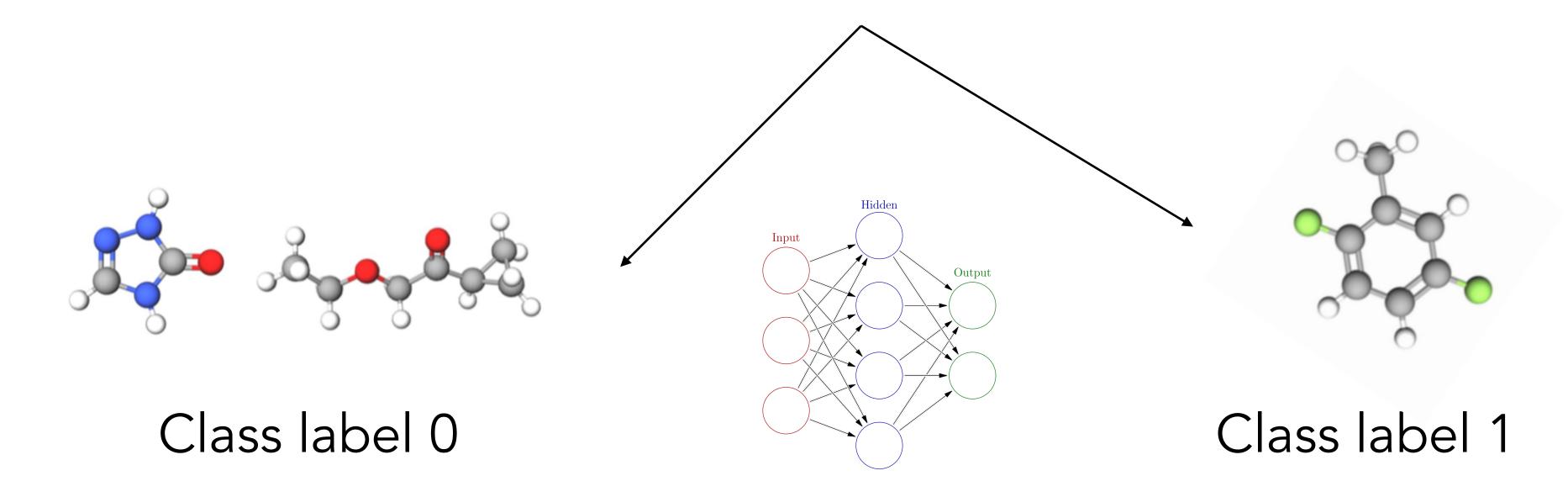


Class label 0

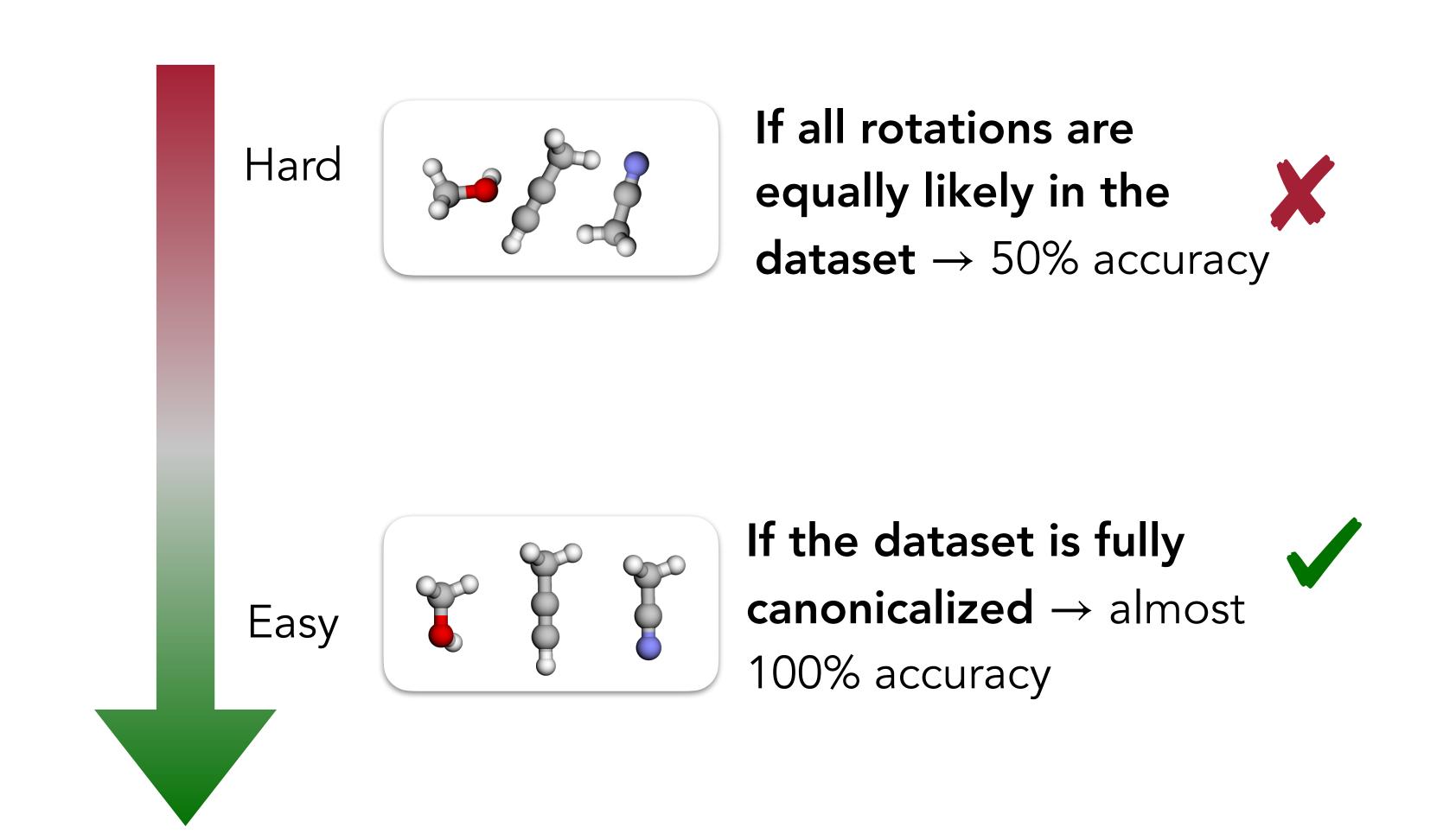
Class label 1



Split it into two halves

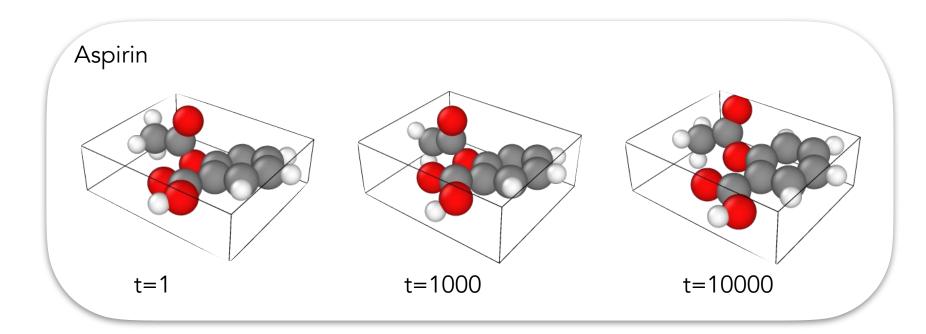


## Interpretation of the test accuracy



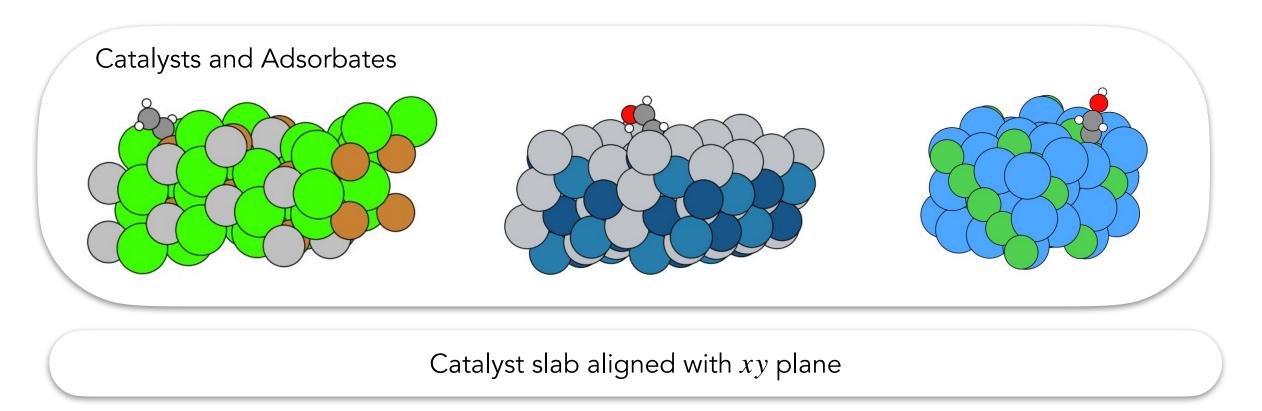
## What do we find in practice?

MD17: 79%-97% test accuracy (by molecule)

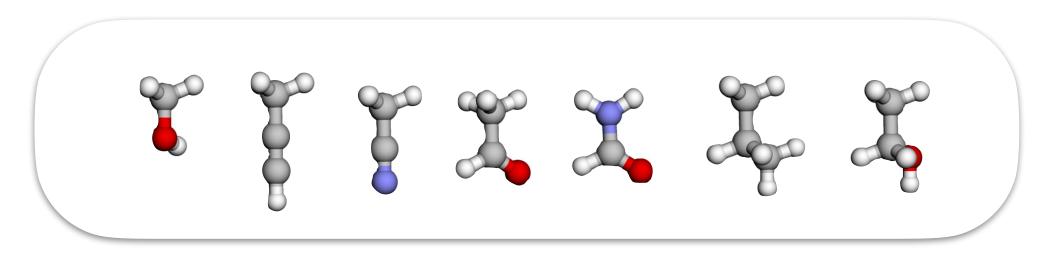


Relaxation trajectory determined by t=0 orientation and physical structure of molecule

OC20: 97% test accuracy w/o surface, 99% with

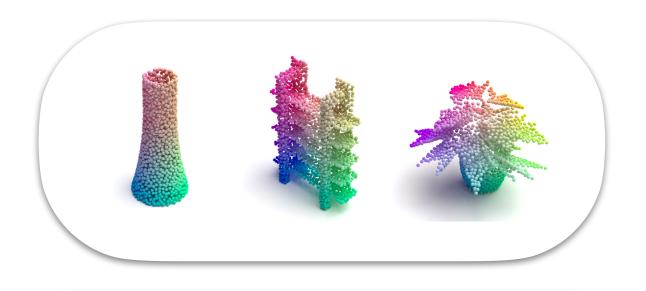


QM9: 99% test accuracy



CORINA [5] used to generate conformers → may perform alignment

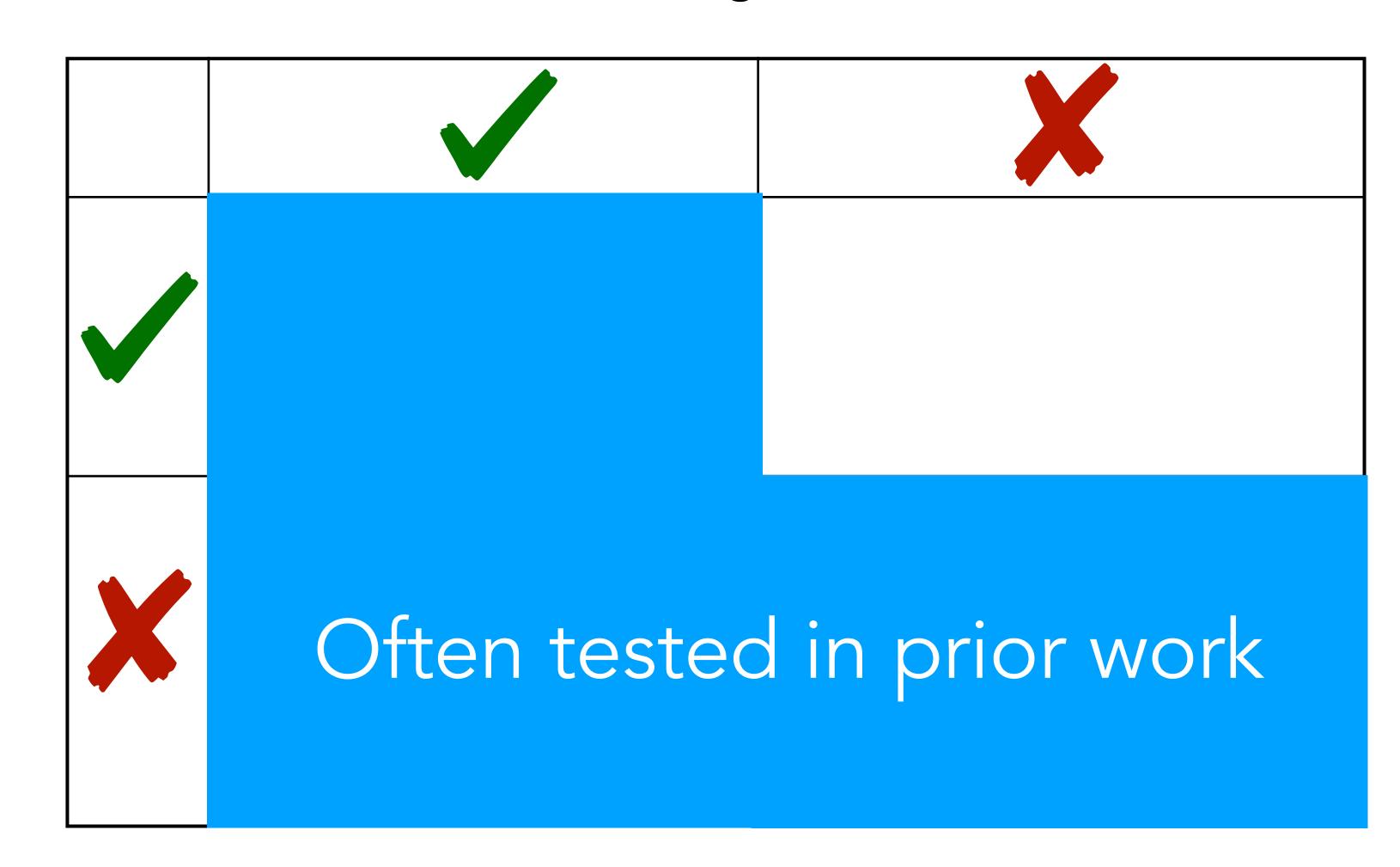
ModelNet40: 92% test accuracy



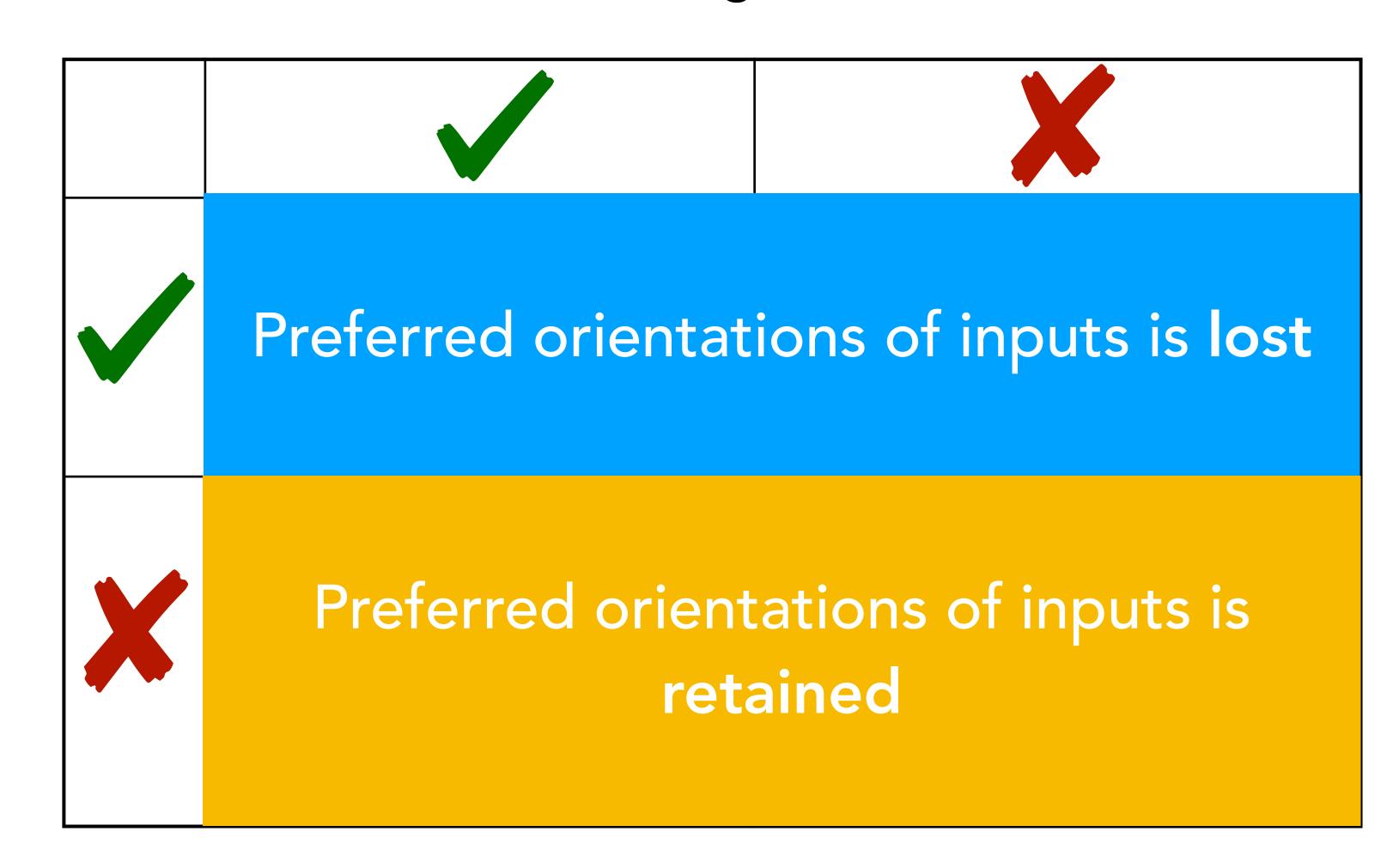
Objects have preferred orientations in reality

Test-time augmentation

Test-time augmentation



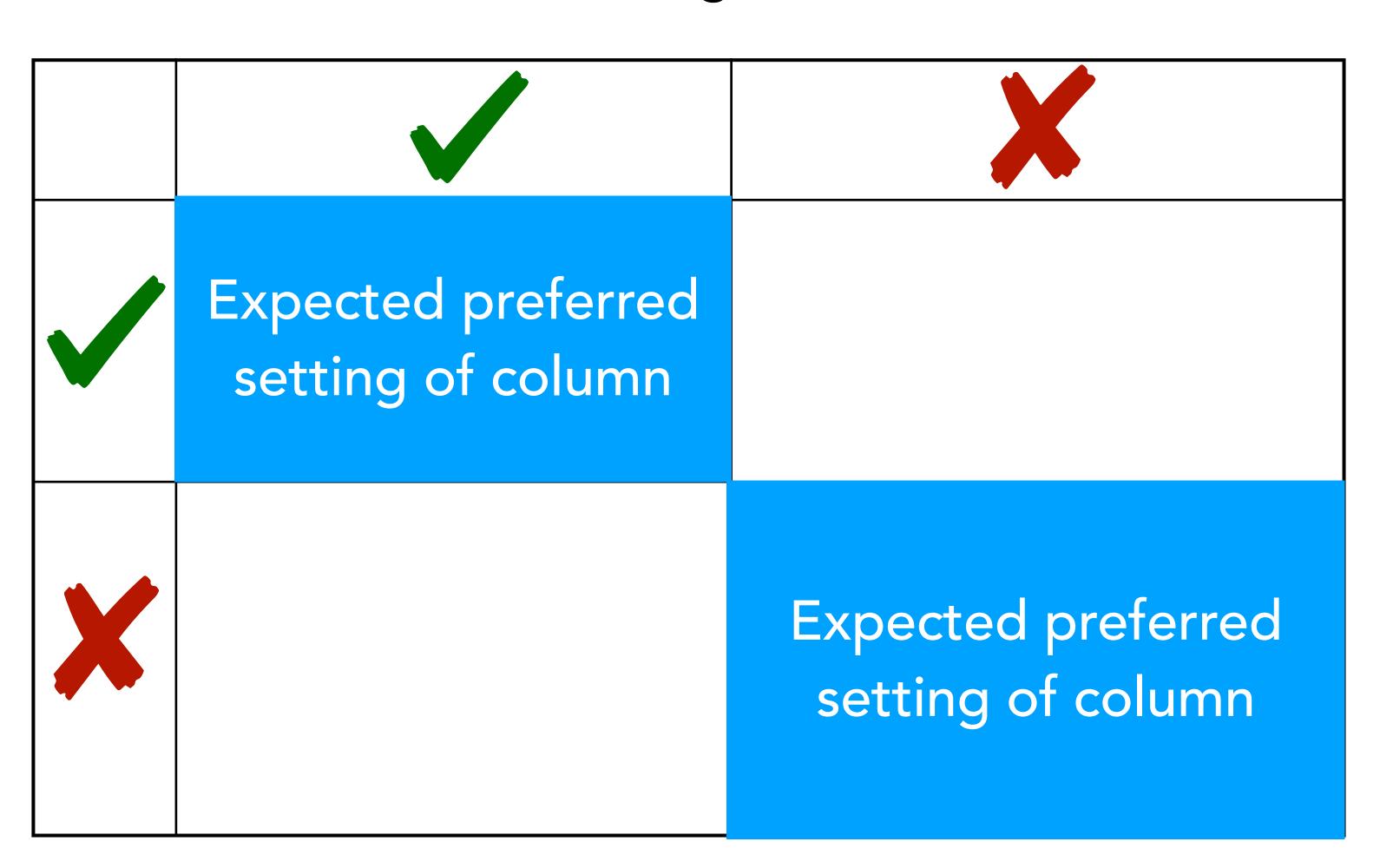
Test-time augmentation



Test-time augmentation

| In-distribution    | Distribution shift |
|--------------------|--------------------|
| Distribution shift | In-distribution    |

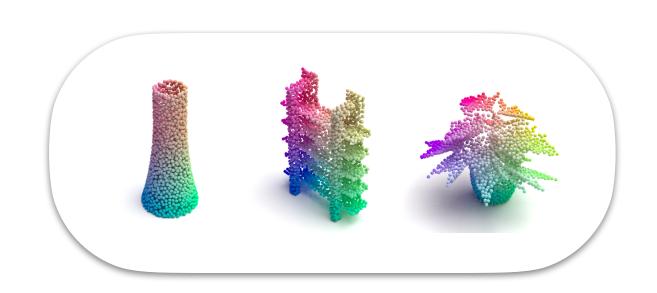
Test-time augmentation

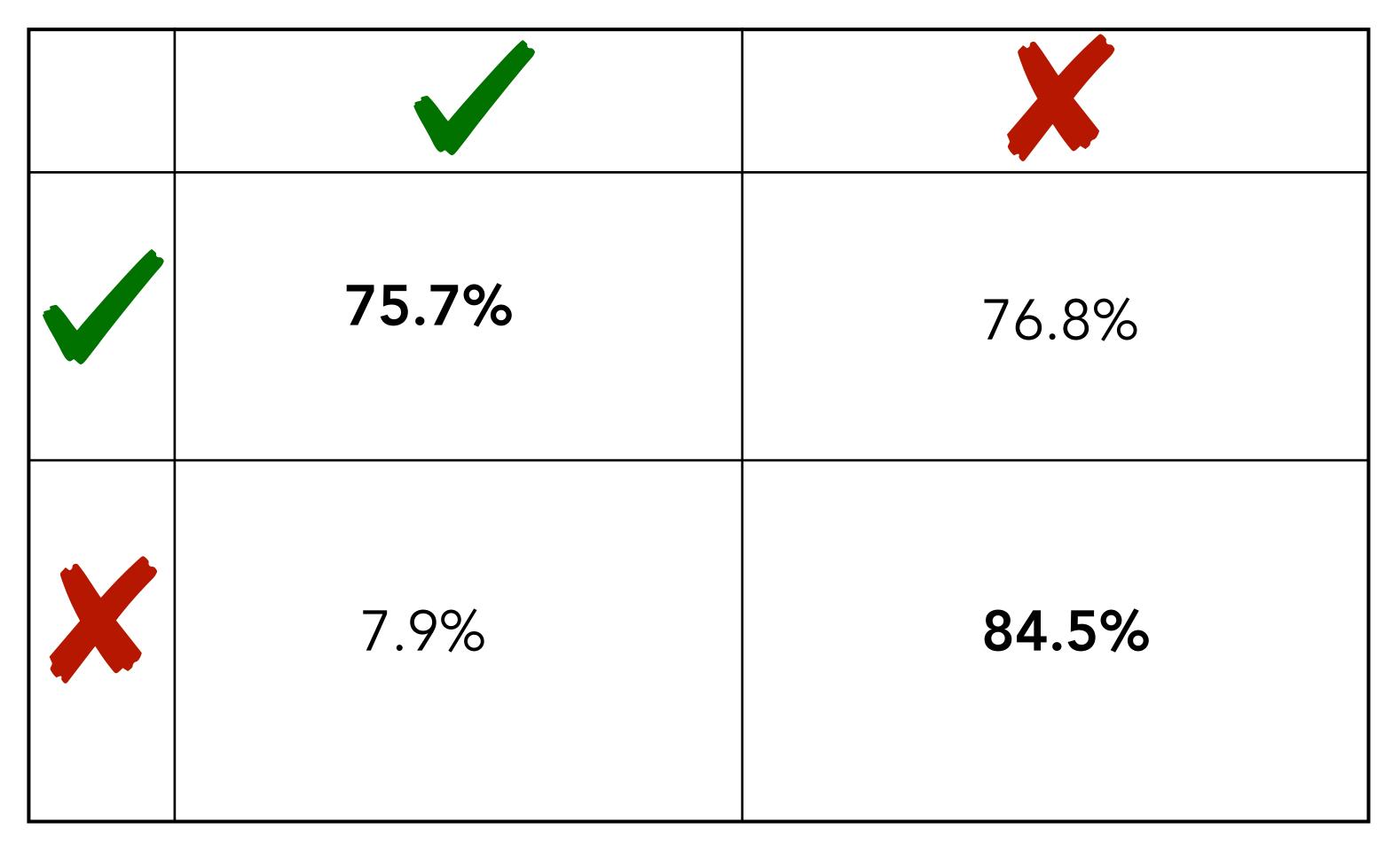


Test-time augmentation

# ModelNet40 Dataset

Train-time augmentation

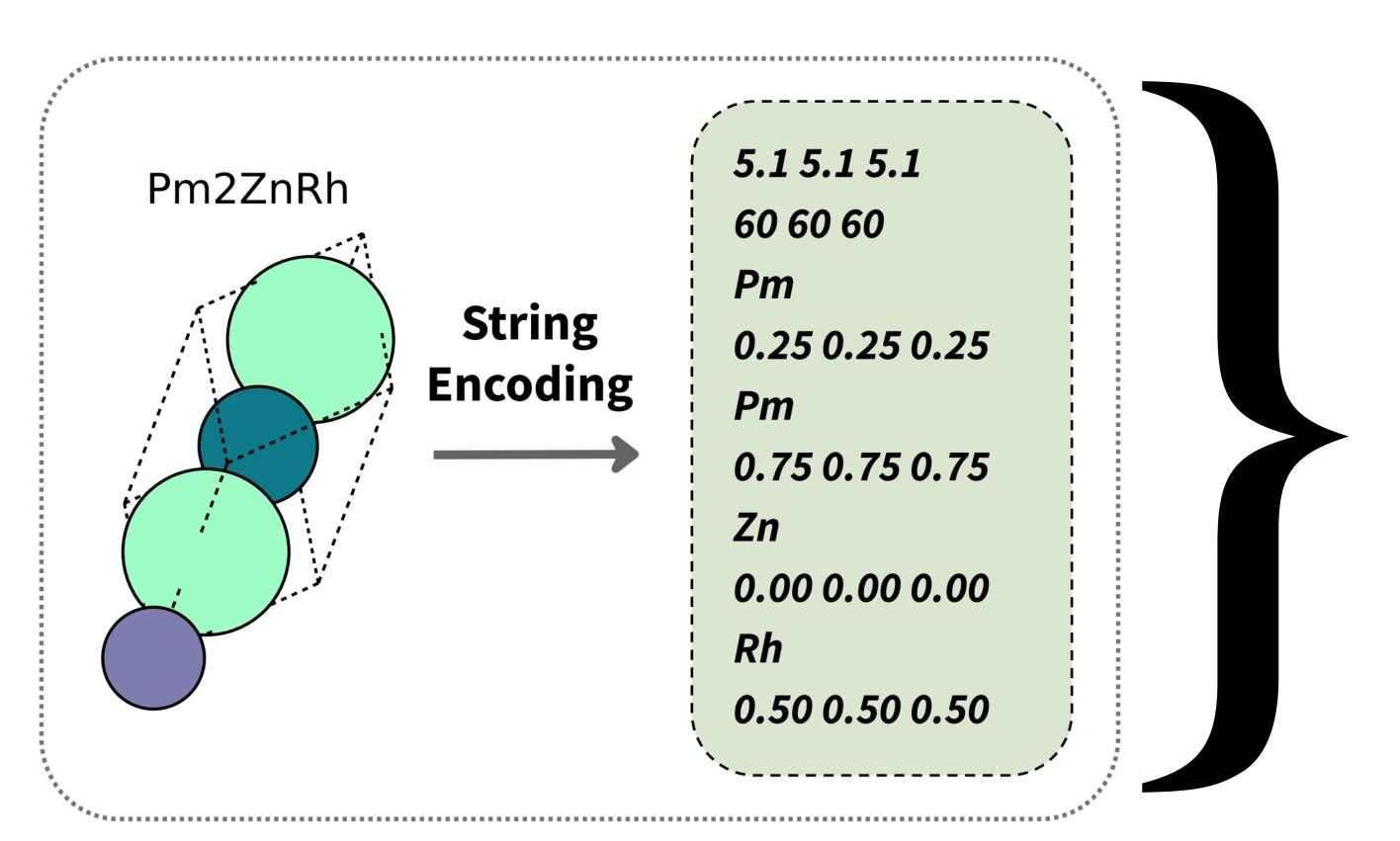




(Accuracy, higher = better)

## Materials datasets used by LLMs?

Gruver et al, "Fine-Tuned LLMs Generate Stable Materials as Text"



Use LM to distinguish between this text vs atom-permuted version

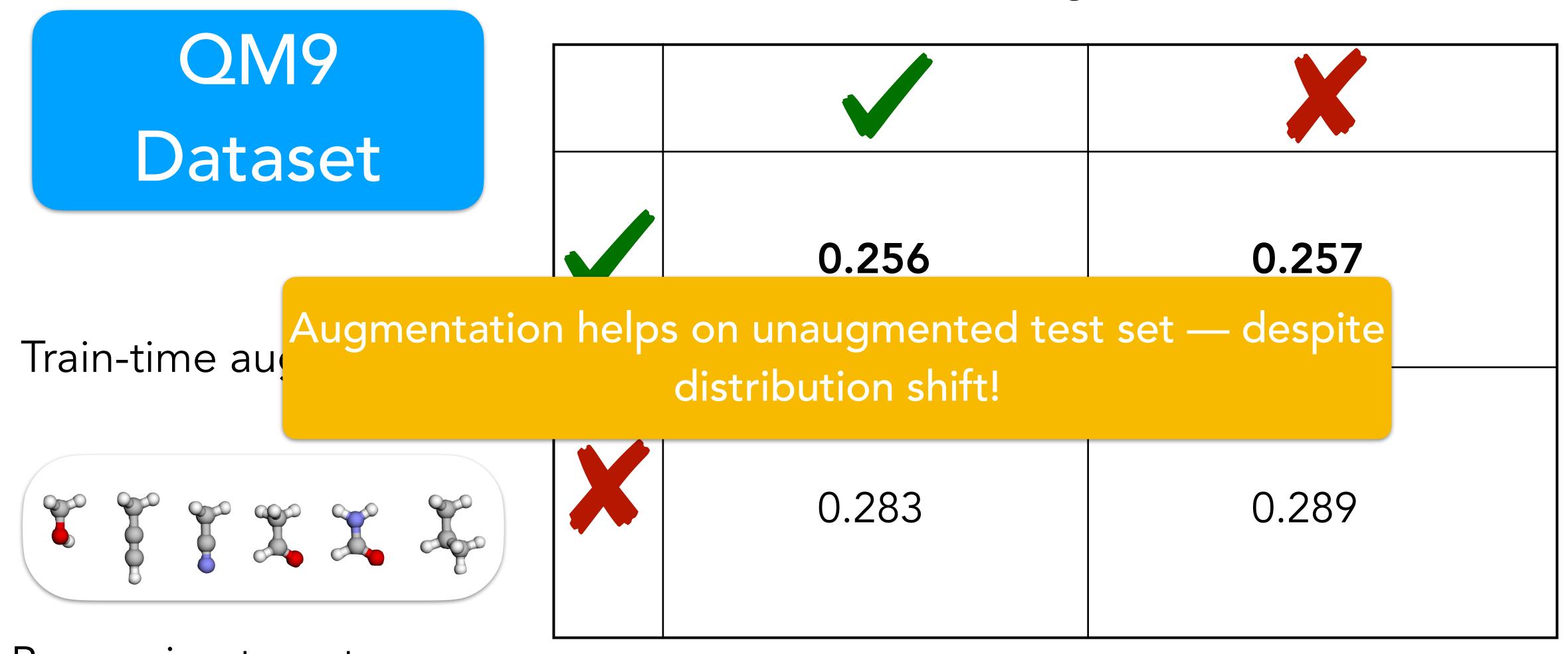


Binary classification accuracy 95%

→ highly non-random orderings!

Moreover: paper found that permutation augmentations hurt generative performance

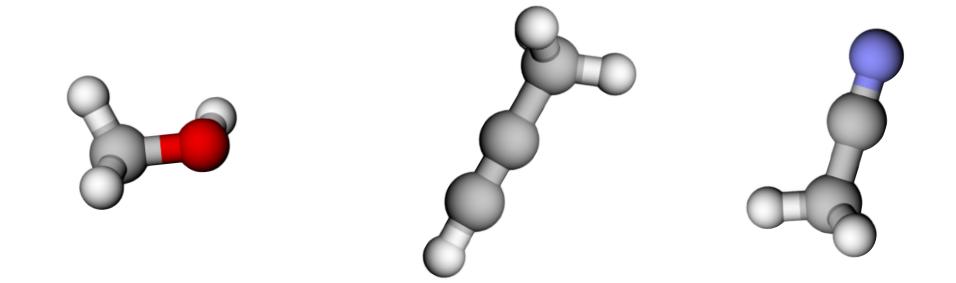
Test-time augmentation



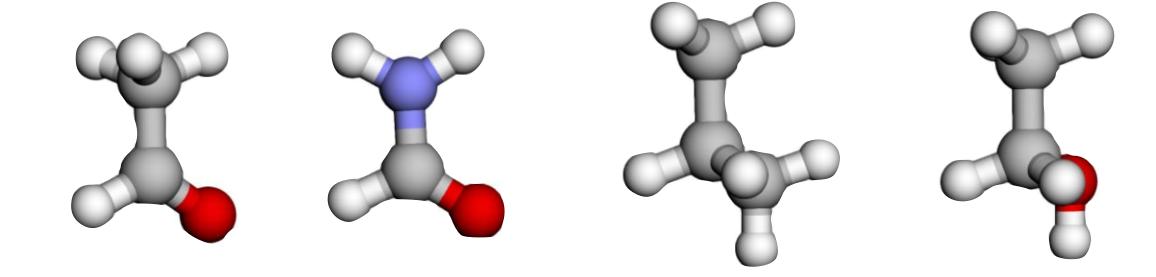
Regression target  $\mu$ 

(MAE, lower = better)

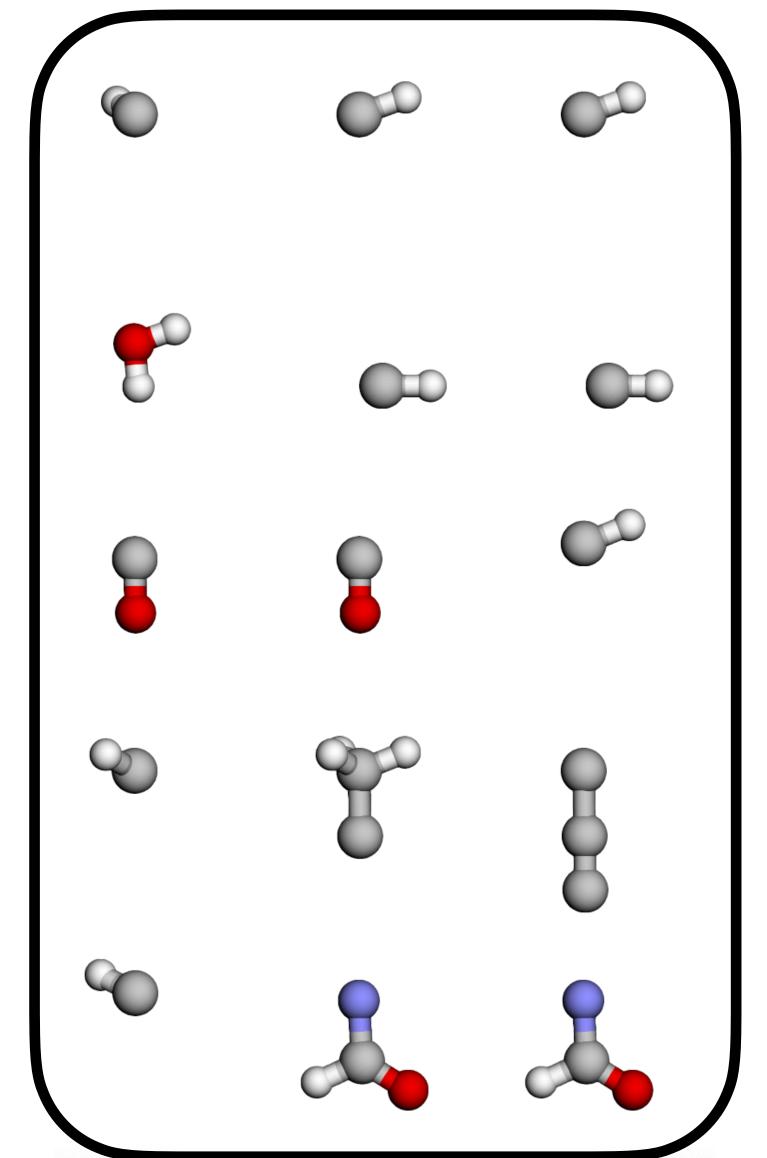
#### Why does training on this augmented dataset:

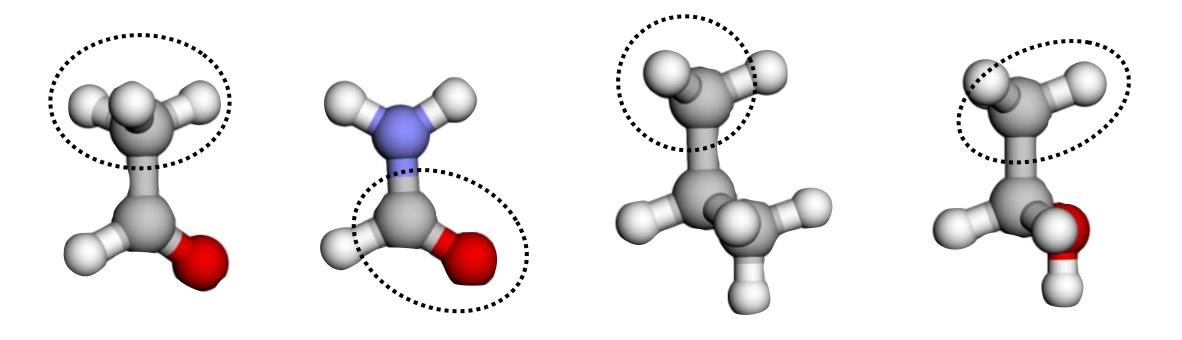


improve performance on this unaugmented test set?

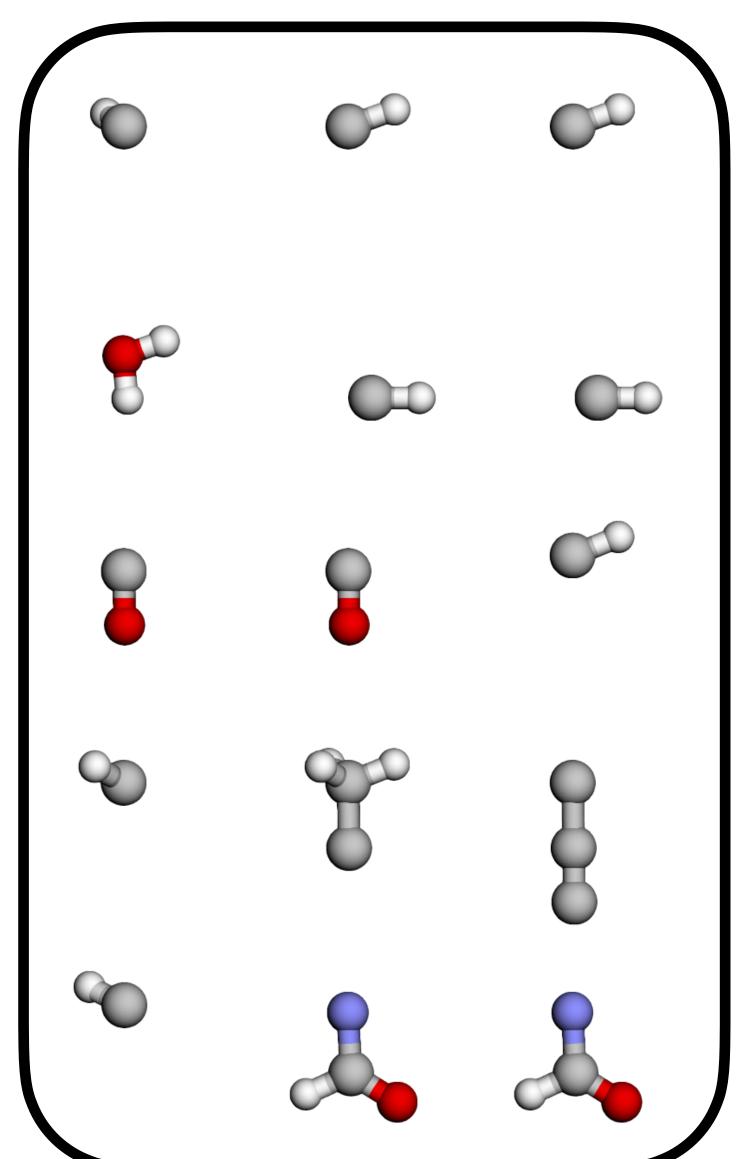


## Is locality the explanation?





## Is locality the explanation?



→ Binary classifier can only distinguish with 67.6% test accuracy, compared to 99% on full dataset

→ local motifs in QM9 are more evenly distributed over poses, compared to full molecules

Perhaps local equivariance is key to equivariant methods' success?

## In summary...

- Benchmark point cloud datasets, and at least one "LLM for science" dataset, are highly, quantifiably non-uniform over orientations
  - This has implications for whether you should use equivariant methods!
- In some cases (QM9), augmentation might be doing more than we thought
- Not covered: we have theory to back things up in the linear case!
- Interesting/ongoing directions: quantifying task-useful canonicalization (although: spurious vs. useful correlation will always require an expert, or a test set!)

#### Thanks!



Elyssa Hofgard MIT



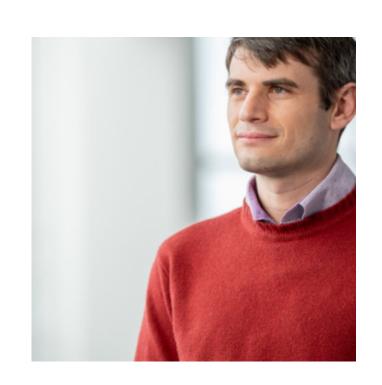
Vasco Portilheiro Gatsby, UCL



Yuxuan Chen NEU

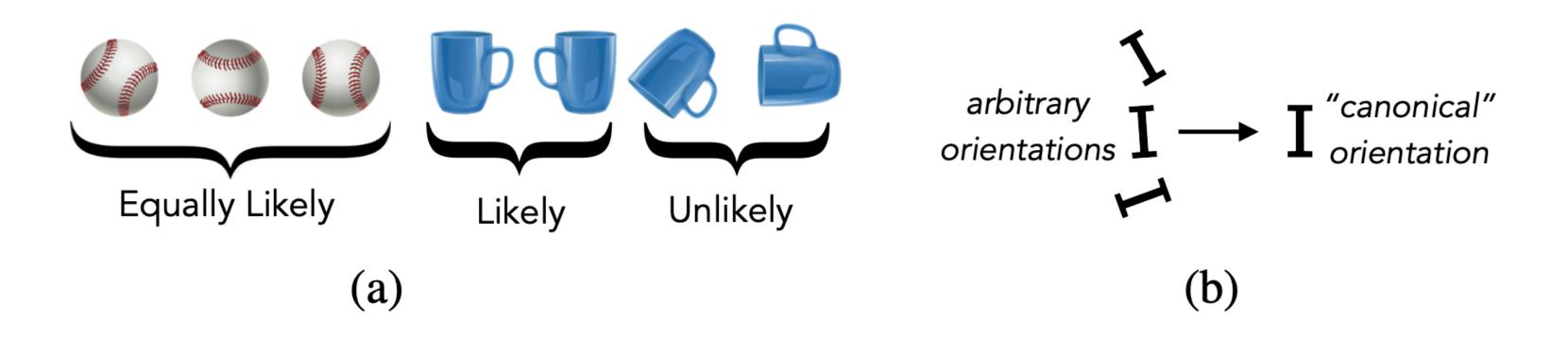


Tess Smidt MIT

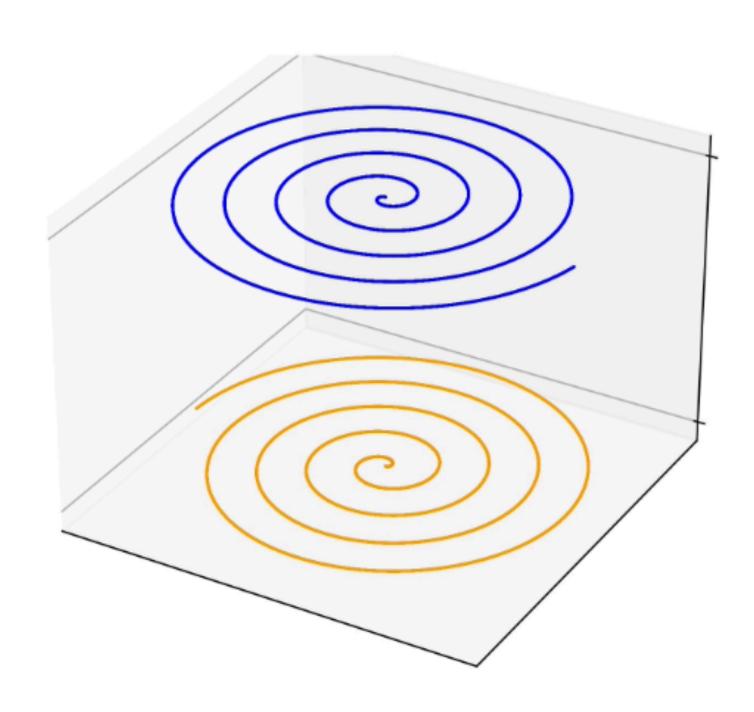


Robin Walters NEU

# Backup slides

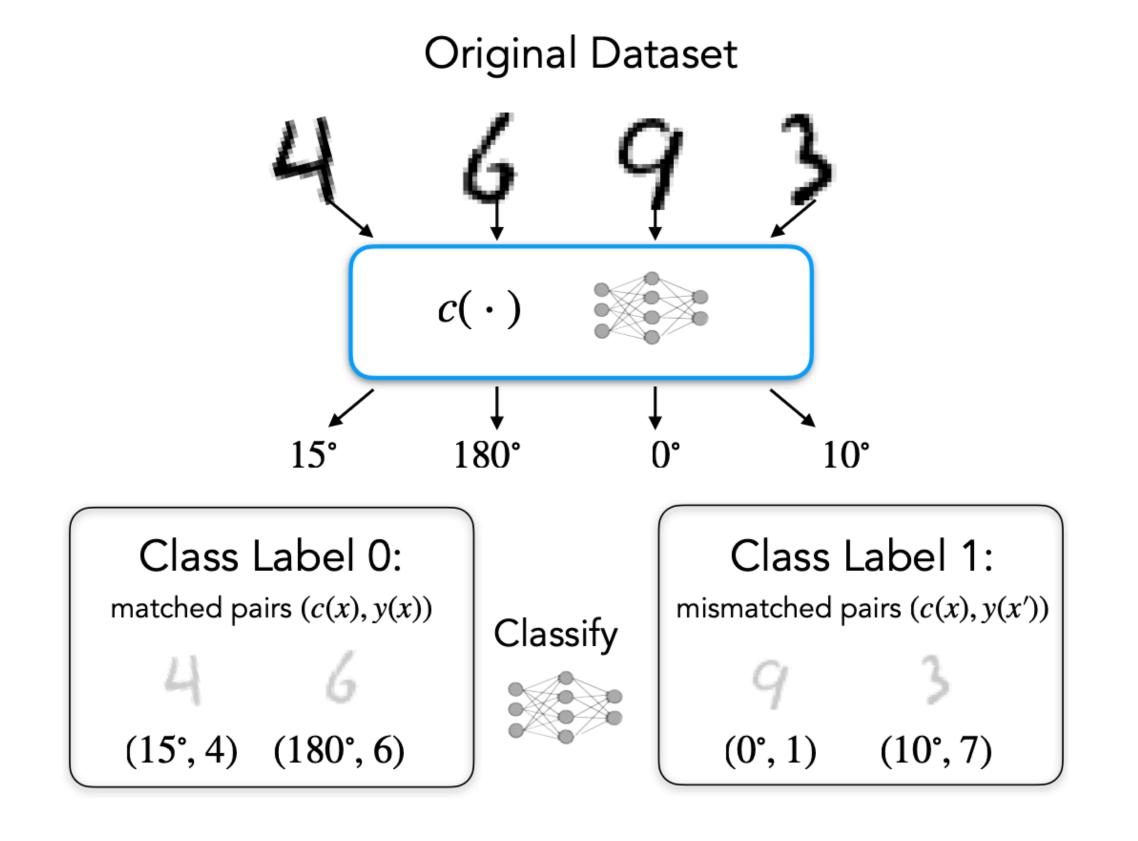


## Spiral dataset

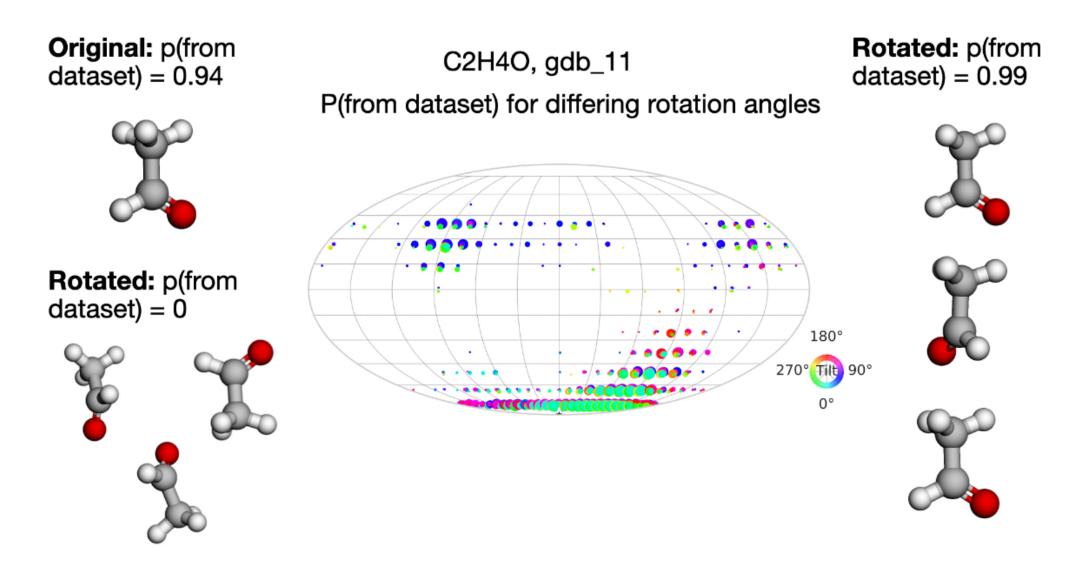


## Task-dependent metric

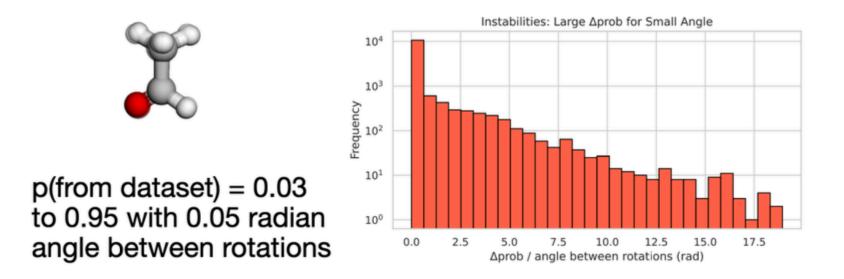
Inspired by mutual information between pose and label



#### Visualizing what the classifier learned



Probabilities per rotation angle for a sample that is classified correctly. The colors correspond to rotations orthogonal to the sphere and the size of the dots corresponds to the probability value. The original molecule in the dataset is shown on the upper left. The lower left shows rotations that cause prob (original) to be zero. The right shows rotations that cause prob (original) to be high.



Instability in the decision boundary (left): two nearby rotations cause a large change in predicted probability. Histogram (right): certain examples exhibit such instabilities more frequently.

Figure 25: Visualizations of classifier outputs for an example classified incorrectly.