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Birdwatching 101

Example credit: Walters lab

Brown creeper: walks up trees Nuthatch: walks down trees
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The underlying classification function is invariant



Birdwatching 101

Example credit: Walters lab

Brown creeper: walks up trees Nuthatch: walks down trees

But an equivariant model can’t use this pose information!



MNIST Example

Digits have preferred orientation, which conveys useful information

…even if the actual digits are technically distinguishable



The data distribution as orbits

“orbit” of 6 “orbit” of 9



What an equivariant method sees

“orbit” of 6 “orbit” of 9

As if all mass is equally distributed on the orbit

⋯⋯ ⋯⋯



What’s happening here?
• The underlying function is rotation invariant 

• However, the data distribution is NOT uniform over orbits:  (bird pointed 
up) and  (bird pointed down) are not equally likely 

• Different species of birds — or digits — have preferred orientations, 
which they’re more likely to be found in 

• Theoretically, the best invariant model can still tell the difference between 
the birds, but it is forced to use potentially “hard” features, like feather 
coloration, rather than the “easy” non-invariant feature of orientation

x
gx



Actually, lots of data has preferred orientations

Superficial: user-defined; due 
to convention in how the data 

was generated/stored

Fundamental: some more fundamental, replicable 
process in the data generation



Why do we care?
• Understanding your data is important! 

• If you only care about generalizing in-distribution… 

• by using an invariant method, you might be throwing away useful 
information without realizing it 

• If you care about generalizing out of distribution, to new orientations… 

• by using a non-invariant method, you might be led astray by 
overoptimistic validation performance 



Goals of this study
• Quantify the extent to which benchmark point cloud datasets are 

distributed evenly over rotations 

• Build on current metrics (e.g. kernel-based hypothesis test framework, 
Chiu & Bloem-Reddy 2024)  

• Empirically test what the implications are for learning with/without 
augmentations 

Note: distinct from the symmetry discovery problem! 



Proposal #1: measuring canonicalization 

Start with your natural dataset



Proposal #1: measuring canonicalization 

Split it into two halves



Proposal #1: measuring canonicalization 

Split it into two halves

Don’t change anything Randomly rotate everything



Proposal #1: measuring canonicalization 

Split it into two halves

Class label 0 Class label 1



Proposal #1: measuring canonicalization 
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Class label 0 Class label 1



Interpretation of the test accuracy

If all rotations are 
equally likely in the 
dataset  50% accuracy →

Hard

If the dataset is fully 
canonicalized  almost 
100% accuracy 

→Easy



What do we find in practice?

CORINA [5] used to generate conformers  may perform alignment→

QM9: 99% test accuracy
MD17: 79%-97% test accuracy (by molecule)

As

Aspirin

t=1 t=1000 t=10000

Relaxation trajectory determined by  orientation and physical 
structure of molecule

t = 0

OC20: 97% test accuracy w/o surface, 99% with

Catalysts and Adsorbates

Catalyst slab aligned with  planexy

ModelNet40: 92% test accuracy

Objects have preferred orientations in reality



What are the implications for learning?

Train-time augmentation

Test-time augmentation



What are the implications for learning?

Train-time augmentation

Test-time augmentation

Often tested in prior work



What are the implications for learning?

Train-time augmentation

Test-time augmentation

Preferred orientations of inputs is lost

Preferred orientations of inputs is 
retained



What are the implications for learning?

Train-time augmentation

Test-time augmentation

Distribution shift

Distribution shift

In-distribution

In-distribution



What are the implications for learning?

Train-time augmentation

Test-time augmentation

Expected preferred 
setting of column

Expected preferred 
setting of column



What are the implications for learning?

Train-time augmentation

Test-time augmentation

ModelNet40 
Dataset

76.8%75.7%

7.9% 84.5%

(Accuracy, higher = better)



Materials datasets used by LLMs?
Gruver et al, “Fine-Tuned LLMs Generate Stable Materials as Text”

}Use LM to distinguish between this 
text vs atom-permuted version

Binary classification accuracy 95%

 highly non-random orderings!→

Moreover: paper found that permutation augmentations hurt generative performance



What are the implications for learning?

Train-time augmentation

Test-time augmentation

QM9 
Dataset

0.256

(MAE, lower = better)

0.257

0.283 0.289

Regression target μ

Augmentation helps on unaugmented test set — despite 
distribution shift!



Why does training on this augmented dataset:

improve performance on this unaugmented test set?



Is locality the explanation?



Is locality the explanation?
 Binary classifier can only distinguish with 

67.6% test accuracy, compared to 99% on full 
dataset

→

 local motifs in QM9 are more evenly 
distributed over poses, compared to full 
molecules

→

Perhaps local equivariance is key to 
equivariant methods’ success?



In summary…
• Benchmark point cloud datasets, and at least one “LLM for science” 

dataset, are highly, quantifiably non-uniform over orientations 

• This has implications for whether you should use equivariant methods! 

• In some cases (QM9), augmentation might be doing more than we thought 

• Not covered: we have theory to back things up in the linear case! 

• Interesting/ongoing directions: quantifying task-useful canonicalization 
(although: spurious vs. useful correlation will always require an expert, or a test set!)
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Backup slides



Spiral dataset



Task-dependent metric
• Inspired by mutual information between pose and label



Visualizing what the classifier learned


